China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. In this study, China's Hg emission inventory is updated to 2007 and applied in the GEOS-Chem model to simulate the Hg concentrations and depositions in China. Results indicate that simulations agree well with observed background Hg concentrations. The anthropogenic sources contributed 35-50% of THg concentration and 50-70% of total deposition in polluted regions. Sensitivity analysis was performed to assess the impacts of mercury emissions from power plants, non-ferrous metal smelters and cement plants. It is found that power plants are the most important emission sources in the North China, the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) while the contribution of non-ferrous metal smelters is most significant in the Southwest China. The impacts of cement plants are significant in the YRD, PRD and Central China.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2014.03.011 | DOI Listing |
Nat Commun
January 2025
Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, 70118, USA.
Mercury (Hg) contamination poses a persistent threat to the remote Arctic ecosystem, yet the mechanisms driving the pronounced summer rebound of atmospheric gaseous elemental Hg (Hg) and its subsequent fate remain unclear due to limitations in large-scale seasonal studies. Here, we use an integrated atmosphere-land-sea-ice-ocean model to simulate Hg cycling in the Arctic comprehensively. Our results indicate that oceanic evasion is the dominant source (~80%) of the summer Hg rebound, particularly driven by seawater Hg release facilitated by seasonal ice melt (~42%), with further contributions from anthropogenic deposition and terrestrial re-emissions.
View Article and Find Full Text PDFEnviron Pollut
January 2025
College of Meteorology and Oceanography, National University of Defense Technology, Changsha, 410073, China.
Understanding the composition of mercury (Hg) in the atmosphere is important for confirming its sources and to preventing and reduce the production. To explore the morphological distribution characteristics of wet Hg concentrations in Xi'an Shaanxi Province, China, total Hg (THg), dissolved Hg (DTHg), reactive Hg (RTHg) and particulate-bound Hg (PTHg) (Hg insoluble in water) were measured at 72 precipitation in Xi'an from September 2020 to July 2022, and their average concentrations were 3.035 ± 3.
View Article and Find Full Text PDFSci Total Environ
January 2025
Trent University, Peterborough, Ontario, Canada.
Arctic rivers may be the largest net sources of mercury (Hg) to the Arctic Ocean, yet riverine sources of Hg remain poorly characterized compared to atmospheric processes. This article reviews the current state of knowledge on Hg inputs to the Mackenzie River and Valley in Northern Canada from six point and non-point sources. Point sources include the locations of mines, fossil fuel extraction facilities, and retrogressive permafrost thaw slumps.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea. Electronic address:
The source-receptor relationship of atmospheric mercury is a critical environmental concern. However, comprehensive evaluations of mercury pollution based on spatially resolved and time-averaged data have not yet been conducted in Korea. In this study, the spatio-temporal variations of total gaseous mercury (TGM) and mercury isotopes were examined using passive air samplers at 30 sites in Ulsan over one year.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
Mercury (Hg) is a neurotoxic pollutant that is ubiquitous on the planet and receives global concern because of its adverse health effects. Particle-bound Hg formation in the atmosphere stems mainly from the adsorption of reactive gaseous Hg on aerosol particles, particularly sea salt aerosol. However, the observed comparable abundance of Hg over Hg in the marine atmosphere has not been reproduced by traditional statistics-based schemes, which were constructed by continental observations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!