[¹⁸F]FMISO is the most widely validated PET radiotracer for imaging hypoxic tissue. However, as a result of the pharmacokinetics of [¹⁸F]FMISO a 2h wait between tracer administration and patient scanning is required for optimal image acquisition. In order to develop hypoxia imaging agents with faster kinetics, we have synthesised and evaluated several F-18 labelled anilino sulfoxides. In this manuscript we report on the synthesis, in vitro and in vivo evaluation of a novel fluoroethyltriazolyl propargyl anilino sulfoxide. The radiolabelling of the novel tracer was achieved via 2-[¹⁸F]fluoroethyl azide click chemistry. Radiochemical yields were 23 ± 4% based on 2-[¹⁸F]fluoroethyl azide and 7 ± 2% based on K[¹⁸F]F. The radiotracer did not undergo metabolism or defluorination in an in vitro assay using S9 liver fractions. Imaging studies using SK-RC-52 tumors in BALB/c nude mice have indicated that the tracer may have a higher pO₂ threshold than [¹⁸F]FMISO for uptake in hypoxic tumors. Although clearance from muscle was faster than [¹⁸F]FMISO, uptake in hypoxic tumors was slower. The average tumor to muscle ratio at 2h post injection in large, hypoxic tumors with a volume greater than 686 mm³ was 1.7, which was similar to the observed ratio of 1.75 for [¹⁸F]FMISO. Although the new tracer showed improved pharmacokinetics when compared with the previously synthesised sulfoxides, further modifications to the chemical structure need to be made in order to offer significant in vivo imaging advantages over [¹⁸F]FMISO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nucmedbio.2014.03.001 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
On the one hand, nature utilizes hierarchical assemblies to create complex biological binding pockets, enabling ultrastrong recognition toward substrates in aqueous solutions. On the other hand, chemists have been fervently pursuing high-affinity recognition by constructing covalently well-preorganized stereoelectronic cavities. The potential of noncovalent assembly, however, for enhancing molecular recognition has long been underestimated.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh.
Interleukin 6 (IL6) is an inflammatory biomarker linked to central and peripheral nervous system diseases. This study combined bioinformatics and statistical meta-analysis to explore potential associations between IL6 gene variants (rs1800795, rs1800796, and rs1800797) and neurological disorders (NDs) and brain cancer. The meta-analysis was conducted on substantial case-control datasets and revealed a significant correlation between IL6 SNPs (rs1800795 and rs1800796) with overall NDs (p-value < 0.
View Article and Find Full Text PDFSmall
January 2025
Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China.
Near-infrared (NIR)-triggered type-I photosensitizers are crucial to address the constraints of hypoxic tumor microenvironments in phototherapy; however, significant challenges remain. By selecting an electron-deficient unit, a matched energy gap in the upper-level state is instrumental in boosting the efficiency of intersystem crossing for the type-I electron transfer process. 2-Cyanothiazole, an electron acceptor, is covalently linked with N, N-diphenyl-4-(thiophen-2-yl)aniline to yield a multifunctional photosensitizer (TTNH) that exhibits intrinsic NIR absorbance and compatible T energy levels, facilitating both radiative and nonradiative transitions.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Rehabilitation Medicine, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, People's Republic of China.
Photodynamic therapy (PDT) is a promising noninvasive tumor treatment modality that relies on generating reactive oxygen species (ROS) and requires an adequate oxygen supply to the target tissue. However, hypoxia is a common feature of solid tumors and profoundly restricts the anti-tumor efficacy of PDT. In recent years, scholars have focused on exploring nanomaterial-based strategies for oxygen supplementation and integrating non-oxygen-consuming treatment approaches to overcome the hypoxic limitations of PDT.
View Article and Find Full Text PDFHeliyon
January 2025
Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
Hyaluronic acid (HA) is a popular surface modifier in targeted cancer delivery due to its receptor-binding abilities. However, HA alone faces limitations in lipid solubility, biocompatibility, and cell internalization, making it less effective as a standalone delivery system. This comprehensive study aimed to explore a dynamic landscape of complexation in HA-based nanoparticles in cancer therapy, examining diverse aspects from influential modifiers to emerging trends in cancer diagnostics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!