Spatial and temporal temperature variations exist in a compost pile. This study demonstrates that systematic temperature sampling of a compost pile, as is widely done, tends to underestimate these variations, which in turn may lead to false conclusions about the sanitary condition of the final product. To address these variations, a proper scheme of temperature sampling needs to be used. A comparison of the results from 21 temperature data loggers randomly introduced into a compost pile with those from 20 systematically introduced data loggers showed that the mean, maximum and minimum temperatures in both methods were very similar in their magnitudes. Overall, greater temperature variation was captured using the random method. In addition, 95% of the probes introduced systematically had attained thermophilic sanitation conditions (≥ 55°C for three consecutive days), as compared to 76% from the group that were randomly introduced. Furthermore, it was found that, from a statistical standpoint, readings from at least 47 randomly introduced temperature loggers are necessary to capture the observed temperature variation. Lastly, the turning of the compost pile was found to increase the chance that any random particle would be exposed to the temperature ≥ 55°C for three consecutive days. One turning was done during the study, and it increased the probability from 76% to nearly 85%. Using the Markov chain model it was calculated that if five turnings had been implemented on the evaluated technology, the likelihood that every particle would experience the required time-temperature condition would be 98%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2014.03.016 | DOI Listing |
Data Brief
December 2024
U.S. Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45268, USA.
A life cycle inventory (LCI) dataset for food waste management was developed using secondary data from scientific literature and government reports. EPA reports on food waste management were used as the basis for collecting literature to review. Unit process parameters from the reviewed literature are compiled and combined with engineering calculations to generate LCI for food management pathways.
View Article and Find Full Text PDFEnviron Technol
December 2024
College of Electromechanical Engineering, Henan Agricultural University, Zhengzhou, People's Republic of China.
To reduce the ammonia loss during the trough composting process and the problem of low initial pH of the compost due to one-time addition of organic acids. In this study, we investigated the feasibility of buffering the pH of the compost and controlling the ammonia emission through the addition of dilute acetic acid sprayed on the surface of the compost pile after several pile-turnings in the trough composting process. The results showed that the spraying of acetic acid did not have a significant difference in the effect on the initial pH and maintained a slightly alkaline environment throughout the composting process, which led to an increase in the degradation rate of 58.
View Article and Find Full Text PDFWaste Manag
December 2024
Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, Carretera de Beniel Km 3,2, Orihuela, Alicante 03312, Spain.
Olive mill wastes (OMW) management by composting allows to obtain valuable fertilizing products, but also implies significant fluxes of greenhouse gases (GHG). For a proper OMW composting, high C- and N co-substrates are necessary, but little is known concerning their effect on GHG emissions in OMW-industrial scale composting. In this study, different co-composting agents (cattle manure (CM), poultry manure (PM), sheep manure (SM) and pig slurry solid fraction (PSSF) as N sources and olive leaves (OLW) and urban pruning residues (UPR) as bulking agents and C sources) were used for OMW composting at industrial scale.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, St. Joseph's College, Irinjalakuda, Thrissur, Calicut University, Kerala 680 121, India; Department of Chemistry, St. Aloysius College, Elthuruth, Thrissur, Kerala 680 611, India. Electronic address:
J Hazard Mater Adv
November 2024
SAF Leather Industries Limited, Naopara, Jashore 7460, Bangladesh.
Fecal sludge and tannery liming sludge management is essential for humans and the environment. The emitted amount of waste from two industries is reduced in composting leading to value-added products. This research focused on the effectiveness and feasibility of co-composting fecal sludge and hair-burning liming sludge from tannery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!