The aim of this study was to evaluate the potential of near-infrared reflectance spectroscopy (NIR) as a rapid and non-destructive method to determine soluble solid content (SSC) in intact jaboticaba [Myrciaria jaboticaba (Vell.) O. Berg] fruit. Multivariate calibration techniques were compared with pre-processed data and variable selection algorithms, such as partial least squares (PLS), interval partial least squares (iPLS), a genetic algorithm (GA), a successive projections algorithm (SPA) and nonlinear techniques (BP-ANN, back propagation of artificial neural networks; LS-SVM, least squares support vector machine) were applied to building the calibration models. The PLS model produced prediction accuracy (R(2)=0.71, RMSEP=1.33 °Brix, and RPD=1.65) while the BP-ANN model (R(2)=0.68, RMSEM=1.20 °Brix, and RPD=1.83) and LS-SVM models achieved lower performance metrics (R(2)=0.44, RMSEP=1.89 °Brix, and RPD=1.16). This study was the first attempt to use NIR spectroscopy as a non-destructive method to determine SSC jaboticaba fruit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2014.03.066 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!