Effects of hydrothermal processes on antioxidants in brown, purple and red bran whole grain rice (Oryza sativa L.).

Food Chem

Dale Bumpers National Rice Research Center, Agricultural Research Service, United States Department of Agriculture, 2890 Hwy 130 E., Stuttgart, AR 72160, USA. Electronic address:

Published: September 2014

The impacts of parboiling and wet-cooking, alone and in combination, on the concentrations of lipophilic antioxidants (vitamin E and γ-oryzanol), soluble (including proanthocyanidins and anthocyanins) and cell wall-bound phenolics, and antioxidant capacities in whole grain rice from six cultivars having different bran colours were investigated. Parboiling rough and brown rice increased the concentrations of lipophilic antioxidants in whole grain rice but decreased the concentrations of total phenolics and antioxidant capacities found in the soluble fraction. After hydrothermal processing of purple bran rice, the retention of extractable anthocyanins was low, but was high for simple phenolics. For proanthocyanidins found in red bran rice, the extractable oligomers with a degree of polymerization (DP) less than 4, increased up to 6-fold; while for oligomers with DP⩾4 and polymers, there was a significant decrease that was positively correlated with the DP and the temperature of the processing methods. The presence of hulls helped to retain water-soluble antioxidants during parboiling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2014.02.164DOI Listing

Publication Analysis

Top Keywords

grain rice
12
red bran
8
concentrations lipophilic
8
lipophilic antioxidants
8
phenolics antioxidant
8
antioxidant capacities
8
bran rice
8
rice
6
effects hydrothermal
4
hydrothermal processes
4

Similar Publications

Biochar Amendment Alleviates the Risk of High-Salinity Saltwater Intrusion for the Growth and Yield of Rice L.).

Recent Adv Food Nutr Agric

January 2025

Environmental Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.

Introduction: Saltwater intrusion poses a serious risk to global food security. As a soil amendment, biochar mitigates the negative effects of saltwater intrusion in rice, yet the beneficial effects on agricultural productivity with different exposure times and salt concentrations have not been fully examined.

Methods: A pot experiment was conducted to investigate the effects of 30% (w/w) rice husk biochar on the growth, ion accumulation, and yield of the Phitsanulok 2 rice cultivar under salt stress due to saltwater intrusion.

View Article and Find Full Text PDF

The synergistic application of calcium (Ca) and magnesium (Mg) was investigated to mitigate cadmium (Cd) uptake and translocation in rice grown in Cd-contaminated soil. A pot experiment was conducted using different Ca:Mg molar ratios (Ca1:Mg2, Ca2:Mg1, and Ca1:Mg1) to evaluate their effect on Cd uptake. The results showed that the Ca1:Mg1 treatment achieved the highest reduction in grain Cd content (54.

View Article and Find Full Text PDF

Feasible approaches for arsenic speciation analysis in foods for dietary exposure assessment: a review.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

January 2025

Department of Food Science and Nutrition, Hong Kong Polytechnic University, Kowloon, Hong Kong, China.

Arsenic (As) occurs naturally in different forms and oxidation states. Amongst them, inorganic arsenic (iAs) is classified as both genotoxic and carcinogenic whilst other organic arsenic species are considered less toxic. As in rice is mainly present in the form of iAs which therefore poses a health risk to populations that consume rice as a staple food.

View Article and Find Full Text PDF

The molecular structure of leaf starch from three cereal crops.

Carbohydr Polym

March 2025

Jiangsu Key Laboratory of Crop Genetics and Physiology/ State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics, Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Center for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia. Electronic address:

Plants produce storage and transient starches in seeds and in leaves, respectively. Understanding molecular fine structure and synthesis of transient starch can help improve plant quality (e.g.

View Article and Find Full Text PDF

Water-saving irrigation and the mixed application of controlled-release nitrogen fertilizer (CRNF) and common urea (CU; with a higher nitrogen release rate) have shown promise in improving rice yield with high resource use efficiency. However, the physiological mechanism underlying this effect remains largely unknown. This study involved a field experiment on rice in Jingzhou City, Central China, in 2020 and 2021.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!