Dipalmitoylphosphatidylcholine (DPPC) and 1,2-palmitoyl-phosphatidic acid (DPPA) liposomes, prepared by conventional rotary evaporation method, have similar structural organization, though they have significant differences. The similarity is that both types of lipids create standard bilayer liposomes with strong hydrophobic forces between lipids tails and with homogeneous bonds of hydrogen and electrostatic nature between hydrophilic lipids heads. By the calorimetric method, it has been shown that hydrophobic bonds break but liposomes' destruction does not occur by heating till 150 °C. As for bonds between lipid heads in liposomes, their cooperative destruction takes place at 41 °C for DPPC and 66 °C for DPPA liposomes. In the case of thermal distraction of DPPC liposomes, two so-called pre transitions peaks were observed before the main transition peak, which indicates that DPPC liposomes' structure is multilamellar. DPPA liposomes have one cooperative heat absorption peak, which points to a unilamellar structure of such liposomes. Substances of hydrophobic/hydrophilic nature, incorporated into the liposomes, are placed in hydrophobic or hydrophilic parts of liposomes, which lead to a change in calorimetric peak shapes and thermodynamic parameters. It has been shown that gold nanoparticles, incorporated into the DPPC liposomes, are able to enter Caco-2 cells. In contrast, these nanoparticles do not enter red blood cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/08982104.2014.911316 | DOI Listing |
J Biol Inorg Chem
January 2025
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA.
Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States.
Eukaryotic plasma membranes exhibit nanoscale lateral lipid heterogeneity, a feature that is thought to be central to their function. Studying these heterogeneities is challenging since few biophysical methods are capable of detecting domains at submicron length scales. We recently showed that cryogenic electron microscopy (cryo-EM) can directly image nanoscale liquid-liquid phase separation in extruded liposomes due to its ability to resolve the intrinsic thickness and electron density differences of ordered and disordered phases.
View Article and Find Full Text PDFEur J Pharm Sci
December 2024
Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; Andreas Hettich GmbH, 78532 Tuttlingen, Germany. Electronic address:
Thermosensitive liposomes (TSLs) have great potential for the selective delivery of cytostatic drugs to the tumor site with greatly reduced side effects. Here we report the discovery and characterization of new thermosensitive small multilamellar lipid nanoparticles (tSMLPs) with unusually high temperature selectivity. Furthermore, the temperature-dependent release of the fluorescent marker calcein from tSMLPs is enhanced by human serum albumin.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Medicinal Chemistry, Uppsala University, P.O. Box 547, 751 23, Uppsala, Sweden. Electronic address:
We have investigated the effect of length and chemical structure of phospholipid tails on the spontaneous formation of unilamellar liposomal vesicles in binary solute mixtures of cationic drug surfactant and zwitterionic phosphatidylcholine phospholipids. Binary drug surfactant-phospholipid mixtures with four different phospholipids with identical headgroups (two saturated phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, 14:0) and 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, 16:0), and two unsaturated lipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, 18:1) and 1,2-Dierucoyl-sn-Glycero-3-Phosphatidylcholine (DEPC, 22:1)) combined with two different tricyclic antidepressant drugs (amitriptyline hydrochloride (AMT) and doxepin hydrochloride (DXP)) have been investigated with small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). We observe a conspicuous impact of phospholipid tail structure on both micelle-to-vesicle transition point and vesicle size.
View Article and Find Full Text PDFMolecules
November 2024
Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
A thermoresponsive copolymer based on oligo(ethylene glycol) methacrylate, Chol-P(MEOMA-co-OEGMA), was synthesized using Atom Transfer Radical Polymerization (ATRP) and incorporated into thermosensitive liposomes (TSLs) for controlled drug release. The copolymer exhibited a lower critical solution temperature (LCST) of 37 °C, making it suitable for biomedical applications requiring precise thermal triggers. The copolymer was incorporated into various TSL formulations alongside phospholipids such as DPPC, Lyso-PC, HSPC, and DSPC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!