We show that hydrodynamic theories of polar active matter generically possess inhomogeneous traveling solutions. We introduce a unifying dynamical-system framework to establish the shape of these intrinsically nonlinear patterns, and show that they correspond to those hitherto observed in experiments and numerical simulation: periodic density waves, and solitonic bands, or polar-liquid droplets both cruising in isotropic phases. We elucidate their respective multiplicity and mutual relations, as well as their existence domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.112.148102 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
Atmospheric elemental mercury (Hg) assimilation by foliage contributes prevalently to the global atmospheric Hg sink in forests. Today, little is known about the mechanisms of foliar Hg accumulation and how climate factors and tree physiology interact to impact it. Here, we examined meteorological factors, foliar physiological traits, and Hg accumulation rates from leaf emergence to senescence in a tropical rainforest, tropical savanna, and subtropical evergreen broadleaf forest.
View Article and Find Full Text PDFSci China Life Sci
December 2024
Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics.
View Article and Find Full Text PDFCardiovasc Diagn Ther
December 2024
East Slovak Institute of Cardiovascular Diseases and School of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia.
Background: Echocardiography is widely used to assess aortic stenosis (AS) but can yield inconsistent results, leading to uncertainty about AS severity and the need for further diagnostics. This retrospective study aimed to evaluate a novel echocardiography-based marker, the signal intensity coefficient (SIC), for its potential in accurately identifying and quantifying calcium in AS, enhancing noninvasive diagnostic methods.
Methods: Between May 2022 and October 2023, 112 cases of AS that were previously considered severe by echocardiography were retrospectively evaluated, as well as a group of 50 cases of mild or moderate AS, both at the Eastern Slovak Institute of Cardiovascular Diseases in Kosice, Slovakia.
BMC Infect Dis
January 2025
EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, nº 135, Porto, 4050 - 600, Portugal.
Background: The incidence of mosquito-borne infections has increased worldwide. Mainland Portugal's characteristics might favour the (re)emergence of mosquito-borne diseases. This study aimed to characterize the spatial distribution of vectors and notification rates of imported cases of mosquito-borne infections in mainland Portugal and demarcate the areas where these geographies overlap.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
Introduction: With the increasing impact of hepatocellular carcinoma (HCC) on society, there is an urgent need to propose new HCC diagnostic biomarkers and identification models. Histone lysine lactylation (Kla) affects the prognosis of cancer patients and is an emerging target in cancer treatment. However, the potential of Kla-related genes in HCC is poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!