We present a Floquet scattering theory of electron waiting time distributions in periodically driven quantum conductors. We employ a second-quantized formulation that allows us to relate the waiting time distribution to the Floquet scattering matrix of the system. As an application we evaluate the electron waiting times for a quantum point contact, modulating either the applied voltage (external driving) or the transmission probability (internal driving) periodically in time. Lorentzian-shaped voltage pulses are of particular interest as they lead to the emission of clean single-particle excitations as recently demonstrated experimentally. The distributions of waiting times provide us with a detailed characterization of the dynamical properties of the quantum-coherent conductor in addition to what can be obtained from the shot noise or the full counting statistics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.112.146801 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!