1,3,5-Tri-p-tolyl-pentane-1,5-diol.

Acta Crystallogr Sect E Struct Rep Online

Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA.

Published: February 2014

In the title compound, C26H30O2, the central benzene ring forms dihedral angles of 14.85 (15) and 28.17 (14)° with the terminal benzene rings. The dihedral angle between the terminal benzene rings is 32.14 (13)°. The crystal packing exhibits two strong inter-molecular O-H⋯O hydrogen bonds, forming directed four-membered co-operative rings. A region of disordered electron density, most probably disordered ethyl acetate solvent mol-ecules, occupying voids of ca 519 Å(3) for an electron count of 59, was treated using the SQUEEZE routine in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148-155]. Their formula mass and unit-cell characteristics were not taken into account during refinement. The structure was refined as an inversion twin [absolute structure parameter = -0.3 (4)].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998290PMC
http://dx.doi.org/10.1107/S160053681400018XDOI Listing

Publication Analysis

Top Keywords

terminal benzene
8
benzene rings
8
135-tri-p-tolyl-pentane-15-diol title
4
title compound
4
compound c26h30o2
4
c26h30o2 central
4
central benzene
4
benzene ring
4
ring forms
4
forms dihedral
4

Similar Publications

Surface-anchored metal-organic frameworks (surMOFs) are crystalline, nanoporous, supramolecular materials mounted to substrates that have the potential for integration within device architectures relevant for a variety of electronic, photonic, sensing, and gas storage applications. This research investigates the thin film formation of the Cu-BDC (copper benzene-1,4-dicarboxylate) MOF system on a carboxylic acid-terminated self-assembled monolayer by alternating deposition of solution-phase inorganic and organic precursors. X-ray diffraction (XRD) and atomic force microscopy (AFM) characterization demonstrate that crystalline Cu-BDC thin films are formed via Volmer-Weber growth.

View Article and Find Full Text PDF

The reaction between 1,3-bis(3,5-dimethylpyrazolylmethyl)hexahydropyrimidine L and Mo(CO) in CHCN at 130 °C afforded a binuclear Mo(0) complex 1 containing a new macrocycle formed upon C-N bond cleavage in L in good yield. Conversely, a clean reaction takes place between L and [Mo(CO)(COD)] in THF at 60 °C to give a new metalloligand complex [Mo(CO)(κ-,-L)] 2 containing a spectator pyrazole arm in 83% yield. Their structures were determined by X-ray diffraction methods, and a plausible mechanism is proposed for the C-N bond cleavage leading to complex 1.

View Article and Find Full Text PDF

Metal-organic frameworks generated from oligomeric ligands with functionalized tethers.

Chem Sci

December 2024

Department of Chemistry and Biochemistry, University of California, San Diego La Jolla California 92093 USA

Metal-organic frameworks (MOFs) can be prepared from oligomeric organic ligands to prepare materials referred to as oligoMOFs. Studies of oligoMOFs are relatively limited, with most existing reports focused on fundamental structure-property relationships. In this report, functional groups, such as terminal alkynes and pyridine groups, are installed on the tether between 1,4-benzene dicarboxylic acid (Hbdc) groups of the dimer ligands.

View Article and Find Full Text PDF

Flexible film in display requires multi-functional integration, such as stretchability, flexibility, abrasion resistance, transparency, and shape memory. In this paper, a reasonable design strategy of flexible polyacrylate (PA) film with high transparency, shape memory, excellent abrasion resistance and foldability is presented. The PA films are prepared by free radical polymerization of vinyl-terminated polyurethane (PU) prepolymer as a cross-linking agent and acrylate monomers in ultraviolet (UV) light.

View Article and Find Full Text PDF

Efficient encapsulation of insulin by a giant macrocycle as a powerful approach to the inhibition of its fibrillation.

Chem Sci

January 2025

Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University Tianjin 300387 P. R. China jychen_msc.yeah.net

Diabetes is a lifelong metabolic disease that requires frequent subcutaneous injections of insulin. However, free insulin is prone to forming immunogenic fibrillar aggregates under physiologic conditions, which limits its biomedical applications. Here, an approach to inhibiting insulin fibrils was developed through entire encapsulation by a giant macrocyclic inhibitor agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!