Increased levels of cyclin D1 and amplification of CCND1 gene occur in many types of cancers. We have followed the expression of cyclin D1 after treatment with doxorubicin with reference to cell death and other possible therapeutic implications. The effect of the treatment on the cell cycle, survival, intracellular level (flow cytometry), and intracellular localization of cyclin D1 (fluorescence microscopy) and expression of CCND1 (real-time RT-PCR) was investigated in HL-60 cells. An increase in the fluorescence intensity of cyclin D1 occurred after treatment with 0.15 and 0.3 μM doxorubicin. This tendency was confirmed by real-time RT-PCR. Expression of CCND1 in relation to the reference gene PBGD was increased in cells exposed to 0.15 μM doxorubicin. Concomitantly, some alterations in the regulation of the G0/G1, S, and G2/M checkpoints occurred, accompanied by changes in the polyploid fraction of the population. This was particularly evident at 0.3 μM doxorubicin, at which concentration the rate of cell death was also clearly higher. In conclusion, depending on the concentration used, alterations in cell death and the number of S, G2/M, and polyploid cells may correspond with cyclin D1 levels. This, in turn, may reflect an important role of the protein as one of the possible survival/point-of-no-return regulators dependent on its concentration, which seems especially plausible in the context of more prominent cell death in the above-mentioned fractions of cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbin.10290 | DOI Listing |
Background: The autophagy lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are key proteostasis mechanisms in cells, which are dysfunctional in AD and linked to protein aggregation and neuronal death. Autophagy is over activated in Alzheimer's disease brain whereas UPS is severely impaired. Activating autophagy has received most attention, however recent evidence suggests that UPS can clear aggregate proteins and a potential therapeutic target for AD and protein misfolding diseases.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Virginia Commonwealth University, Richmond, VA, USA.
Background: Pyroptosis is a type of inflammasome-dependent cell death, in which gasdermin D (GSDMD) plays key roles as the executor. Neuroinflammation and pyroptosis have been indicated critical roles in neurodegenerative disorders including Alzheimer's disease (AD). Therefore, novel GSDMD inhibitors represent valuable probes to understand and validate GSDMD as a viable drug target for AD.
View Article and Find Full Text PDFBackground: There are no cures for Alzheimer's disease (AD), a progressive neurodegenerative disorder characterized by elevation of beta-amyloid and tau proteins besides neuronal death and causing cognitive impairment. Phosphodiesterase 5 (PDE5) is a cyclic guanosine monophosphate-degrading enzyme involved in numerous biological pathways including those relevant to memory formation. PDE5 inhibition offers the potential to attenuate AD progression by acting at the downstream level of beta-amyloid and tau elevation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.
Background: Alzheimer's disease (AD) is a neurodegenerative disorder primarily associated with aging, but manifests as a complex interplay of multiple factors. Decline in sex-hormones, particularly 17-beta estradiol, is linked to the aging process. The risk for onset of AD significantly increases with aging and loss of estradiol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!