A new analytical model to predict bone sawing forces is presented. Development of the model was based on the concept of a single tooth sawing at a depth of cut less than the cutting edge radius. A variable friction model was incorporated as well as elastic Hertzian contact stress to determine a lower bound for the integration limits. A new high speed linear apparatus was developed to simulate cutting edge speeds encountered with sagittal and reciprocating bone saws. Orthogonal cutting experiments in bovine cortical bone were conducted for comparison to the model. A design of the experiment's approach was utilized with linear cutting speeds between 2600 and 6200 mm/s for depths of cut between 2.5 and 10 μm. Resultant forces from the design of experiments were in the range of 8 to 11 N, with higher forces at greater depths of cut. Model predictions for resultant force magnitude were generally within one standard deviation of the measured force. However, the model consistently predicted a thrust to cutting force ratio that was greater than measured. Consequently, resultant force angles predicted by the model were generally 20 deg higher than calculated from experimental thrust and cutting force measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1115/1.4006972 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!