Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Successful achievement of task goals depends critically on the ability to adjust ongoing actions in response to environmental changes. The neural substrates underlying action modification have been a topic of great controversy: both, posterior parietal cortex and frontal regions, particularly prefrontal cortex have been previously identified as crucial in this regard, with most studies arguing in favor of one or the other. We aimed to address this controversy and understand whether frontal and parietal regions might play distinct roles during action modification. We tested ipsilesional arm performance of 27 stroke patients with focal lesions to frontal or parietal regions of the left or right cerebral hemisphere, and left or right arm performance of 18 healthy subjects on the classic double-step task in which a target is unpredictably displaced to a new location, requiring modification of the ongoing action. Only right hemisphere frontal lesions adversely impacted the timing of initiation of the modified response, while only left hemisphere parietal lesions impaired the accuracy of the modified action. Patients with right frontal lesions tended to complete the ongoing action to the initially displayed baseline target and initiated the new movement after a significant delay. In contrast, patients with left parietal damage did not accurately reach the new target location, but compared to the other groups, initiated the new action during an earlier phase of motion, before their baseline action was complete. Our findings thus suggest distinct, hemisphere specific contributions of frontal and parietal regions to action modification, and bring together, for the first time, disparate sets of prior findings about its underlying neural substrates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258906 | PMC |
http://dx.doi.org/10.1016/j.cortex.2014.03.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!