This study was aimed to investigate a more convenient and efficient method to cultivate the human bone marrow mesenchymal stem cells by means of natural erythrocyte sedimentation principle, based on the whole bone marrow adherent method. The bone marrow was cultured with a six-well plate instead of the flasks.Firstly, the bone marrow specimen was cultivated with the MSC complete medium for 48 h, then the upper RBC-free supernatant layer was drawn and placed into the new wells to isolate MSC. Inverted microscope was used to observe the cell morphology and to record the adherent time of first cell passage, first passaging time. The traditional whole bone marrow adherent method was used as the control. The cell cycle and cell surface markers were detected by flow cytometry,and the differentiative capacity of MSC into osteocyte and adipocyte was identified by alkaline phosphatase kit and oil red O, respectively. Besides, the proliferative curve of P1,P3,P5 of BMSC was depicted by counting method. The results showed that MSC cultured by the modified method highly expressed CD90, CD105, CD13, CD44 and lowly expressed CD14, CD45, CD34. Concerning the cell cycle feature, it was found that most of the cells were in G0/G1 phase (88.76%) , followed by G2/M phase (3.04%) and S phase (8.2%), which was in accordance with stem cell cycle characteristics. The proliferative curve showed a typical "S" type, and both the oil red O and alkaline phosphatase staining of MSC were positive. Compared with the traditional method, the modified method had the advantage of high adherence rate (P = 0.0001) and shorter passaging time for the first passage (P = 0.001), with the statistically significant difference. It is concluded that there is a large number of adherent, active and suspended MSC in the RBC-free supernatant layer after the culture of bone marrow for 48 h. Isolating MSC by the modified method is more convenient and efficient than the traditional whole bone marrow adherent method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7534/j.issn.1009-2137.2014.02.042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!