Protein transport via the Sec translocon represents an evolutionary conserved mechanism for delivering cytosolically-synthesized proteins to extra-cytosolic compartments. The Sec translocon has a three-subunit core, termed Sec61 in Eukaryotes and SecYEG in Bacteria. It is located in the endoplasmic reticulum of Eukaryotes and in the cytoplasmic membrane of Bacteria where it constitutes a channel that can be activated by multiple partner proteins. These partner proteins determine the mechanism of polypeptide movement across the channel. During SRP-dependent co-translational targeting, the ribosome threads the nascent protein directly into the Sec channel. This pathway is in Bacteria mainly dedicated for membrane proteins but in Eukaryotes also employed by secretory proteins. The alternative pathway, leading to post-translational translocation across the Sec translocon engages an ATP-dependent pushing mechanism by the motor protein SecA in Bacteria and a ratcheting mechanism by the lumenal chaperone BiP in Eukaryotes. Protein transport and biogenesis is also assisted by additional proteins at the lateral gate of SecY/Sec61α and in the lumen of the endoplasmic reticulum or in the periplasm of bacterial cells. The modular assembly enables the Sec complex to transport a vast array of substrates. In this review we summarize recent biochemical and structural information on the prokaryotic and eukaryotic Sec translocons and we describe the remarkably complex interaction network of the Sec complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/09687688.2014.907455 | DOI Listing |
Front Immunol
January 2025
Hangzhou Lin'an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, China.
Golgi Protein 73 (GP73) is a Golgi-resident protein that is highly expressed in primary tumor tissues. Initially identified as an oncoprotein, GP73 has been shown to promote tumor development, particularly by mediating the transport of proteins related to epithelial-mesenchymal transition (EMT), thus facilitating tumor cell EMT. Though our previous review has summarized the functional roles of GP73 in intracellular signal transduction and its various mechanisms in promoting EMT, recent studies have revealed that GP73 plays a crucial role in regulating the tumor and immune microenvironment.
View Article and Find Full Text PDFJ Anim Sci Biotechnol
January 2025
Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
Background: The synchronized absorption of amino acids (AAs) and glucose in the gut is crucial for effective AA utilization and protein synthesis in the body. The study investigated how the starch digestion rate and AA levels impact intestinal AA digestion, transport and metabolism, breast muscle protein metabolism, and growth in grower broilers. A total of 720 21-day-old healthy male Arbor Acres Plus broilers were randomly assigned to 12 treatments, each with 6 replicates of 10 birds.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Background: NITRATE TRANSPORTER 1.1 (NRT1.1) functions as a dual affinity nitrate transceptor regulated by phosphorylation at threonine residue 101 (T101).
View Article and Find Full Text PDFSci Rep
January 2025
Nottingham Breast Cancer Research Centre, Academic Unit of Translational Medical Sciences, School of Medicine, University of Nottingham, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, England.
Cancer cells exhibit altered metabolism, often relying on glutamine (Gln) for growth. Breast cancer (BC) is a heterogeneous disease with varying clinical outcomes. We investigated the role of the amino acid transporter SLC1A5 (ASCT2) and its association with BC subtypes and patient outcomes.
View Article and Find Full Text PDFTrends Plant Sci
January 2025
University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; University of Applied Sciences Dresden, Pillnitzer Platz 2, 01326 Dresden, Germany. Electronic address:
Recent research indicates an involvement of microautophagy in the uptake of seed storage proteins (SSPs) into the plant-specific protein storage vacuole (PSV), particularly in cereal grains. However, because microautophagy plays a vital role in cellular homeostasis by degrading and recycling cellular components, we question whether it is a suitable term for a process involved in long-term storage. Additionally, because fission-type microautophagy shares mechanistic similarities with the intraluminal vesicle (ILV) formation of multivesicular bodies (MVBs), we draw parallels between microautophagy and membrane remodeling facilitated by the endosomal sorting complex required for transport (ESCRT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!