Objective: The objective of this overview is to introduce bottom-up mass spectrometry (MS)-based proteomics approaches and strategies, widely used in other biomedical research fields, to the wound-healing research community.
Approaches: TWO MAJOR PROTEOMICS WORKFLOWS ARE DISCUSSED: gel-based and gel-free chromatographic separation to reduce the complexity of the sample at protein and peptide level, respectively, prior to nano-liquid chromatography-tandem mass spectrometry analysis. Other strategies to discover less abundant proteins present in the sample, are also briefly discussed along with label-free and label-incorporated methods for protein quantification. Overall, the experimental workflows are designed and continually improved to increase the number of proteins identifiable and quantifiable.
Discussion: Recent advances and improvements in all areas of proteomics workflow from sample preparation, to acquisition of massive amounts of data, to bioinformatics analysis have made this technology an indispensable tool for in-depth large-scale characterization of complex proteomes. This technology has been successfully applied in studies focusing on biomarker discovery, differential protein expression, protein-protein interactions, and post-translational modifications in complex biological samples such as cerebrospinal fluid, serum and plasma, and urine from patients. The publications from these studies have reported greater number of identified proteins, novel biomarker candidates, and post-translational modifications previously unknown.
Conclusions: The qualitative and quantitative protein analysis of the protein population of wound tissues or fluids at different stages is important in wound healing research. Given the complexities and analytical challenges of these samples, MS-based proteomic workflows further improved with recent advances offer a powerful and attractive technology for this purpose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842888 | PMC |
http://dx.doi.org/10.1089/wound.2012.0384 | DOI Listing |
BMC Nutr
January 2025
Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany.
Background: Obesity is a multifactorial disease reaching pandemic proportions with increasing healthcare costs, advocating the development of better prevention and treatment strategies. Previous research indicates that the gut microbiome plays an important role in metabolic, hormonal, and neuronal cross-talk underlying eating behavior. We therefore aim to examine the effects of prebiotic and neurocognitive behavioral interventions on food decision-making and to assay the underlying mechanisms in a Randomized Controlled Trial (RCT).
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
MS Proteomics Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary.
In recent years, alternative enzymes with varied specificities have gained importance in MS-based bottom-up proteomics, offering orthogonal information about biological samples and advantages in certain applications. However, most mass spectrometric workflows are optimized for tryptic digests. This raises the questions of whether enzyme specificity impacts mass spectrometry and if current methods for nontryptic digests are suboptimal.
View Article and Find Full Text PDFMass Spectrom Rev
January 2025
Department of Chemistry, University of Texas at Austin, Austin, Texas, USA.
Mass spectrometry (MS) has become a critical tool in the characterization of covalently modified nucleic acids. Well-developed bottom-up approaches, where nucleic acids are digested with an endonuclease and the resulting oligonucleotides are separated before MS and MS/MS analysis, provide substantial insight into modified nucleotides in biological and synthetic nucleic. Top-down MS presents an alternative approach where the entire nucleic acid molecule is introduced to the mass spectrometer intact and then fragmented by MS/MS.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
Vulnerable atherosclerotic plaques, especially hemorrhaged lesions, are the major cause of mortalities related to vascular pathologies. The early identification of vulnerable plaques helps to stratify patients at risk of developing acute vascular events. In this study, proteomics analyses of human carotid artery samples collected from patients with atheromatous plaques and complicated lesions, respectively, as well as from healthy controls were performed.
View Article and Find Full Text PDFExp Eye Res
January 2025
Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA. Electronic address:
Purpose: Keratin contamination is a common problem in mass spectrometry proteomic analyses, particularly in bottom-up mass spectrometry. The purpose of this study was to determine the protein contaminants introduced during the proteomic analysis of tear fluid.
Methods: Human tear fluid samples were collected using Schirmer strips.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!