Ghrelin mimics fasting to enhance human hedonic, orbitofrontal cortex, and hippocampal responses to food.

Am J Clin Nutr

From the Metabolic and Molecular Imaging Group (APG, CGP, SS, ADM, NC, SSD, and JDB) and Robert Steiner MRI Unit (GD), Medical Research Council Clinical Sciences Centre, the Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences (CB), the Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism (MAG, DRA, GSF, and SRB), and the Division of Brain Sciences (ADW), Imperial College London, Hammersmith Hospital, London, United Kingdom, and the Department of Endocrinology, University of Virginia, Charlottesville, VA (BDG and MOT).

Published: June 2014

Background: Ghrelin, which is a stomach-derived hormone, increases with fasting and energy restriction and may influence eating behaviors through brain hedonic reward-cognitive systems. Therefore, changes in plasma ghrelin might mediate counter-regulatory responses to a negative energy balance through changes in food hedonics.

Objective: We investigated whether ghrelin administration (exogenous hyperghrelinemia) mimics effects of fasting (endogenous hyperghrelinemia) on the hedonic response and activation of brain-reward systems to food.

Design: In a crossover design, 22 healthy, nonobese adults (17 men) underwent a functional magnetic resonance imaging (fMRI) food-picture evaluation task after a 16-h overnight fast (Fasted-Saline) or after eating breakfast 95 min before scanning (730 kcal, 14% protein, 31% fat, and 55% carbohydrate) and receiving a saline (Fed-Saline) or acyl ghrelin (Fed-Ghrelin) subcutaneous injection before scanning. One male subject was excluded from the fMRI analysis because of excess head motion, which left 21 subjects with brain-activation data.

Results: Compared with the Fed-Saline visit, both ghrelin administration to fed subjects (Fed-Ghrelin) and fasting (Fasted-Saline) significantly increased the appeal of high-energy foods and associated orbitofrontal cortex activation. Both fasting and ghrelin administration also increased hippocampus activation to high-energy- and low-energy-food pictures. These similar effects of endogenous and exogenous hyperghrelinemia were not explicable by consistent changes in glucose, insulin, peptide YY, and glucagon-like peptide-1. Neither ghrelin administration nor fasting had any significant effect on nucleus accumbens, caudate, anterior insula, or amygdala activation during the food-evaluation task or on auditory, motor, or visual cortex activation during a control task.

Conclusions: Ghrelin administration and fasting have similar acute stimulatory effects on hedonic responses and the activation of corticolimbic reward-cognitive systems during food evaluations. Similar effects of recurrent or chronic hyperghrelinemia on an anticipatory food reward may contribute to the negative impact of skipping breakfast on dietary habits and body weight and the long-term failure of energy restriction for weight loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410902PMC
http://dx.doi.org/10.3945/ajcn.113.075291DOI Listing

Publication Analysis

Top Keywords

ghrelin administration
20
ghrelin
9
orbitofrontal cortex
8
energy restriction
8
reward-cognitive systems
8
exogenous hyperghrelinemia
8
cortex activation
8
administration fasting
8
fasting
7
activation
6

Similar Publications

Liver-enriched antimicrobial peptide 2 (LEAP2) is a natural antagonist/inverse agonist of ghrelin receptor GHSR. Its truncated palmitoylated analog palm-LEAP2(1-14) promised anti-obesity properties because it exhibited favourable stability and an acute anorexigenic effect in our previous studies. Here we demonstrate desirable palm-LEAP2(1-14) pharmacokinetics, with significant levels of the peptide persisting in mouse blood 3 h after its subcutaneous administration.

View Article and Find Full Text PDF

Therapeutic Efficacy of the Inositol D-Pinitol as a Multi-Faceted Disease Modifier in the 5×FAD Humanized Mouse Model of Alzheimer's Amyloidosis.

Nutrients

December 2024

Grupo de Neuropsicofarmacología, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Unidades Clínicas de Neurología y Salud Mental, 29010 Málaga, Spain.

Background/objectives: Alzheimer's disease (AD), a leading cause of dementia, lacks effective long-term treatments. Current therapies offer temporary relief or fail to halt its progression and are often inaccessible due to cost. AD involves multiple pathological processes, including amyloid beta (Aβ) deposition, insulin resistance, tau protein hyperphosphorylation, and systemic inflammation accelerated by gut microbiota dysbiosis originating from a leaky gut.

View Article and Find Full Text PDF

Barley dietary fiber (BDF), particularly β-glucan, has shown potential in modulating postprandial glycemic responses and improving metabolic health. This study aimed to assess the effects of Saechalssalbori ( L.), a glutinous barley variety rich in β-glucan, on postprandial blood glucose, insulin, glucagon, triglycerides, and appetite-related hormones in healthy adults.

View Article and Find Full Text PDF

G(1-5)-EM2, a multi-targeted agonist to opioid and growth hormone secretagogue receptors exhibited nontolerance forming antinociceptive effects in a mouse model of burn pain.

Eur J Pharmacol

January 2025

Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, PR China; Jiangxi Province Key Laboratory of Brain Science and Brian Health, Nanchang, Jiangxi Province, 330006, PR China. Electronic address:

Burn induced-pain (BIP) is one of the most common pain symptoms, which seriously affects the quality of sufferer life. Researches show that multi-targeted drug therapies offer superior efficacy and fewer side effects compared to single-target drug therapies. Consequently, in this study, we developed G(1-5)-EM2, a multi-targeted peptide designed to target μ-opioid receptor and the growth hormone secretagogue receptor 1α (GHS-R1α), and explored its antinociceptive effects on burn injury pain.

View Article and Find Full Text PDF

Sexual dimorphism in prokinetic effects of a ghrelin agonist acting through the lumbosacral defecation center in rats.

J Physiol Sci

November 2024

Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.

We investigated the effects of a centrally penetrant ghrelin agonist, RQ-00538053, on colorectal motility in female rats in comparison with that in male rats. Intravenous administration of RQ-00538053 enhanced colorectal motility in female rats. However, approximately tenfold higher doses were required to induce responses in female rats similar to those in male rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!