In this paper we present a novel architecture for phase-locked loop (PLL) based high-speed demodulation of frequency-modulated (FM) atomic force microscopy (AFM) signals. In our approach, we use single-sideband (SSB) frequency upconversion to translate the AFM signal from the position sensitive detector to a fixed intermediate frequency (IF) of 10 MHz. In this way, we fully benefit from the excellent noise performance of PLL-based FM demodulators still avoiding the intrinsic bandwidth limitation of such systems. In addition, the upconversion to a fixed IF renders the PLL demodulator independent of the cantilever's resonance frequency, allowing the system to work with a large range of cantilever frequencies. To investigate if the additional noise introduced by the SSB upconverter degrades the system noise figure we present a model of the AM-to-FM noise conversion in PLLs incorporating a phase-frequency detector. Using this model, we can predict an upper corner frequency for the demodulation bandwidth above which the converted noise from the single-sideband upconverter becomes the dominant noise source and therefore begins to deteriorate the overall system performance. The approach is validated by both electrical and AFM measurements obtained with a PCB-based prototype implementing the proposed demodulator architecture.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBCAS.2014.2307696DOI Listing

Publication Analysis

Top Keywords

noise
6
single-cycle-pll detection
4
detection real-time
4
real-time fm-afm
4
fm-afm applications
4
applications paper
4
paper novel
4
novel architecture
4
architecture phase-locked
4
phase-locked loop
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!