Cadmium (Cd) is a non-essential heavy metal, which is classified as a "known human carcinogen" by the International Agency for Research on Cancer (IARC). Understanding the mechanisms controlling Cd distribution in planta is essential to develop phytoremediation approaches as well as for food safety. Unlike most other plants, tobacco (Nicotiana tabacum) plants translocate most of the Cd taken up from the soil, out of the roots and into the shoots, leading to high Cd accumulation in tobacco shoots. Two orthologs of the Arabidopsis thaliana HMA2 and HMA4 Zn and Cd ATPases that are responsible for zinc (Zn) and Cd translocation from roots to shoots were identified in tobacco and sequenced. These genes, named NtHMAα and NtHMAβ, were more highly expressed in roots than in shoots. NtHMAα was expressed in the vascular tissues of both roots and leaves as well as in anthers. No visual difference was observed between wild-type plants and plants in which the NtHMAα and NtHMAβ genes were either mutated or silenced. These mutants showed reduced Zn and Cd accumulation in shoots as well as increased Cd tolerance. When both NtHMA genes were silenced, plant development was altered and pollen germination was severely impaired due to Zn deficiency. Interestingly, seeds from these lines also showed decreased Zn concentration but increased iron (Fe) concentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431542 | PMC |
http://dx.doi.org/10.1039/c4mt00071d | DOI Listing |
Proc Biol Sci
January 2025
Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
Woody and herbaceous plants are the main components of global terrestrial ecosystems, and their growth, adaptation and survival depend largely on the metabolism of shoots and roots. Therefore, understanding size-scaling of metabolic rates in woody and herbaceous plants, and in shoots and roots, is a fundamental issue in ecology. However, few empirical studies have examined metabolic scaling exponents across a wide range of plant sizes.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
An efficient in vitro propagation protocol has been established for a valuable medicinal plant, Salix tetrasperma using mature nodal explants. The investigation aimed to observe the influence of various combinations and concentrations of cytokinins (mT, BA, and Kn) and auxins (NAA, IAA, and IBA) on regeneration potential using the Murashige and Skoog (MS) medium. Among individual cytokinin treatments, 5.
View Article and Find Full Text PDFPlant Dis
January 2025
Universidad de Chile, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronomicas, Casilla 1004, Santiago, Chile, 8820000;
Walnut (Juglans regia L.) is the primary nut tree cultivated in Chile, covering 44.626 ha.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan.
We generated soybean mutants related to two ß-amyrin synthase genes using DNA-free site-directed mutagenesis system. Our results suggested that one of the genes is predominant in the soyasaponin biosynthesis. Soyasaponins, which are triterpenoid saponins contained in soybean [Glycine max (L.
View Article and Find Full Text PDFInt J Phytoremediation
January 2025
Department of Agronomy, Federal Rural University of Pernambuco, Recife, Brazil.
Co-cropping of hyperaccumulators is still poorly understood, while associations between hyperaccumulators and other plant species may promote beneficial plant interactions and lead to increased metal phytoextraction from contaminated soils. The aim of this study was to evaluate the phytoextraction potential of the Ni-hyperaccumulator in different co-cropping combinations with and . Plants were grown in ultramafic soil in a growth chamber for 45 days and Al, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn concentrations in roots and leaves were analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!