A more secure anonymous user authentication scheme for the integrated EPR information system.

J Med Syst

School of Mathematical Sciences, University of Jinan, Jinan, 250022, China,

Published: May 2014

Secure and efficient user mutual authentication is an essential task for integrated electronic patient record (EPR) information system. Recently, several authentication schemes have been proposed to meet this requirement. In a recent paper, Lee et al. proposed an efficient and secure password-based authentication scheme used smart cards for the integrated EPR information system. This scheme is believed to have many abilities to resist a range of network attacks. Especially, they claimed that their scheme could resist lost smart card attack. However, we reanalyze the security of Lee et al.'s scheme, and show that it fails to protect off-line password guessing attack if the secret information stored in the smart card is compromised. This also renders that their scheme is insecure against user impersonation attacks. Then, we propose a new user authentication scheme for integrated EPR information systems based on the quadratic residues. The new scheme not only resists a range of network attacks but also provides user anonymity. We show that our proposed scheme can provide stronger security.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10916-014-0042-0DOI Listing

Publication Analysis

Top Keywords

authentication scheme
12
integrated epr
12
epr system
12
scheme
9
user authentication
8
scheme integrated
8
range network
8
network attacks
8
smart card
8
user
5

Similar Publications

The proliferation of the Internet of Things (IoT) has worsened the challenge of maintaining data and user privacy. IoT end devices, often deployed in unsupervised environments and connected to open networks, are susceptible to physical tampering and various other security attacks. Thus, robust, efficient authentication and key agreement (AKA) protocols are essential to protect data privacy during exchanges between end devices and servers.

View Article and Find Full Text PDF

Internal auditing demands innovative and secure solutions in today's business environment, with increasing competitive pressure and frequent occurrences of risky and illegal behaviours. Blockchain along with secure databases like encryption improves internal audit security through immutability and transparency. Hence integrating blockchain with homomorphic encryption and multi-factor authentication improves privacy and mitigates computational overhead.

View Article and Find Full Text PDF

Demand for user authentication in virtual reality (VR) applications is increasing such as in-app payments, password manager, and access to private data. Traditionally, hand controllers have been widely used for the user authentication in VR environment, with which the users can typewrite a password or draw a pre-registered pattern; however, the conventional approaches are generally inconvenient and time-consuming. In this study, we proposed a new user authentication method based on eye-writing patterns identified using electrooculogram (EOG) recorded from four locations around the eyes in contact with the face-pad of a VR headset.

View Article and Find Full Text PDF

Anticounterfeiting technologies meet challenges in the Internet of Things era due to the rapidly growing volume of objects, their frequent connection with humans, and the accelerated advance of counterfeiting/cracking techniques. Here, we, inspired by biological fingerprints, present a simple anticounterfeiting system based on perovskite quantum dot (PQD) fingerprint physical unclonable function (FPUF) by cooperatively utilizing the spontaneous-phase separation of polymers and selective in situ synthesis PQDs as an entropy source. The FPUFs offer red, green, and blue full-color fingerprint identifiers and random three-dimensional (3D) morphology, which extends binary to multivalued encoding by tuning the perovskite and polymer components, enabling a high encoding capacity (about 10, far surpassing that of biometric fingerprints).

View Article and Find Full Text PDF

The growing prevalence of cybersecurity threats is a significant concern for railway systems, which rely on an extensive network of onboard and trackside sensors. These threats have the potential to compromise the safety of railway operations and the integrity of the railway infrastructure itself. This paper aims to examine the current cybersecurity measures in use, identify the key vulnerabilities that they address, and propose solutions for enhancing the security of railway infrastructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!