Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To construct a new biomaterial-small intestinal submucosa coated with gelatin hydrogel incorporating basic fibroblast growth factor, and to evaluate the new biomaterials for the reconstruction of abdominal wall defects.
Methods: Thirty six Sprague-Dawley rats were used in the animal experiments and randomly divided into three groups. The new biomaterial was constructed by combining small intestinal submucosa with gelatin hydrogel for basic fibroblast growth factor release. Abdominal wall defects were created in rats, and repaired using the new biomaterials (group B), compared with small intestinal submucosa (group S) and ULTRAPROTM mesh (group P). Six rats in each group were sacrificed at three and eight weeks postoperatively to examine the gross effects, inflammatory responses, collagen deposition and neovascularization.
Results: After implantation, mild adhesion was caused in groups B and S. Group B promoted more neovascularization than group S at three weeks after implantation, and induced significantly more amount of collagen deposition and better collagen organization than groups S and P at eight weeks after implantation.
Conclusion: Small intestinal submucosa coated with gelatin hydrogel incorporating basic fibroblast growth factor could promote better regeneration and remodeling of host tissues for the reconstruction of abdominal wall defects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/s0102-86502014000400006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!