A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing. | LitMetric

Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing.

Bioresour Technol

Microbial Biotechnology Unit, Sector of Botany, Department of Biology, National and Kapodistrian University of Athens, University Campus, 15784 Zografou, Attica, Greece. Electronic address:

Published: June 2014

The ascomycete Paecillomyces variotii was evaluated for the first time as a candidate species for the production of bioethanol from lignocellulose through consolidated bioprocessing (CBP) approaches. The examined strain (ATHUM 8891) revealed all the necessary phenotypic characteristics required for 2nd generation biofuel production. The fungus is able to efficiently ferment glucose and xylose to ethanol, with yields close to the theoretical maximum. Nitrogen supplementation greatly affected ethanol production with nitrate-nitrogen presenting the best results. Notably, ethanol yield on xylose fermentation was higher than that of glucose, while in co-fermentation of glucose-xylose mixtures no distinguished diauxic behavior was observed. Furthermore, the fungus seems to possess the necessary enzyme factory for the degradation of lignocellulosic biomass, as it was able to grow and produce ethanol on common agro-industrial derivatives. Overall, the results of our study indicate that P. variotii is a new and possibly powerful candidate for CBP applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2014.03.137DOI Listing

Publication Analysis

Top Keywords

lignocellulose consolidated
8
consolidated bioprocessing
8
evaluation paecilomyces
4
paecilomyces variotii
4
variotii potential
4
potential bioethanol
4
production
4
bioethanol production
4
production lignocellulose
4
bioprocessing ascomycete
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!