Super-low-dose endotoxemia in experimental animals and humans is linked to low-grade chronic inflammatory diseases. However, the underlying molecular and cellular mechanisms are not well understood. In this study, we examined the effects of a super-low dose of LPS on low-grade inflammation in macrophages as well as underlying mechanisms. We observed that a super-low dose of LPS induces mitochondrial fission and cell necroptosis in primary murine macrophages, dependent upon interleukin 1 receptor-associated kinase (IRAK-1). Mechanistically, our study reveals that a super-low dose of LPS causes protein ubiquitination and degradation of mitofusin 1 (Mfn1), a molecule required for maintaining proper mitochondrial fusion. A super-low dose of LPS also leads to dephosphorylation and activation of Drp1, a molecule responsible for mitochondrial fission and cell necroptosis. Furthermore, we demonstrated that a super-low dose of LPS activates receptor interacting protein 3 kinase (RIP3), a key molecule critical for the assembly of the necrosome complex, the initiation of Drp1 dephosphorylation, and necroptosis. The effects of a super-low dose of LPS are abolished in macrophages harvested from IRAK-1-deficient mice. Taken together, our study identified a novel molecular pathway that leads to cellular stress and necroptosis in macrophages challenged with a super-low dose of endotoxin. This may reconcile low-grade inflammation often associated with low-grade endotoxemia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047395 | PMC |
http://dx.doi.org/10.1074/jbc.M114.569210 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!