AI Article Synopsis

  • A significant portion of eukaryotic microbial diversity can't be grown in laboratories, limiting traditional genomic research methods.
  • Single cell genomics (SCG) allows researchers to analyze individual cells from their natural environment, providing new opportunities for studying these elusive microbes.
  • In this study, SCG was used to generate a draft genome for a cell from the MAST-4 group, revealing nearly 7,000 protein-encoding genes and offering insights into the evolutionary processes, including horizontal gene transfer in this lineage.

Article Abstract

A broad swath of eukaryotic microbial biodiversity cannot be cultivated in the lab and is therefore inaccessible to conventional genome-wide comparative methods. One promising approach to study these lineages is single cell genomics (SCG), whereby an individual cell is captured from nature and genome data are produced from the amplified total DNA. Here we tested the efficacy of SCG to generate a draft genome assembly from a single sample, in this case a cell belonging to the broadly distributed MAST-4 uncultured marine stramenopiles. Using de novo gene prediction, we identified 6,996 protein-encoding genes in the MAST-4 genome. This genetic inventory was sufficient to place the cell within the ToL using multigene phylogenetics and provided preliminary insights into the complex evolutionary history of horizontal gene transfer (HGT) in the MAST-4 lineage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998028PMC
http://dx.doi.org/10.1038/srep04780DOI Listing

Publication Analysis

Top Keywords

single cell
8
genome
4
cell genome
4
genome analysis
4
analysis uncultured
4
uncultured heterotrophic
4
heterotrophic stramenopile
4
stramenopile broad
4
broad swath
4
swath eukaryotic
4

Similar Publications

Cell-cell interactions and communication represent the fundamental cornerstone of cells' collaborative efforts in executing diverse biological processes. A profound understanding of how cells interface through various mediators is pivotal across a spectrum of biological systems. Recent strides in microfluidic technologies have significantly bolstered the precision and prowess in capturing and manipulating cells with exceptional spatial and temporal resolution.

View Article and Find Full Text PDF

Primitive to visceral endoderm maturation is essential for mouse epiblast survival beyond implantation.

iScience

January 2025

Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.

The implantation of the mouse blastocyst initiates a complex sequence of tissue remodeling and cell differentiation events required for morphogenesis, during which the extraembryonic primitive endoderm transitions into the visceral endoderm. Through single-cell RNA sequencing of embryos at embryonic day 5.0, shortly after implantation, we reveal that this transition is driven by dynamic signaling activities, notably the upregulation of BMP signaling and a transient increase in Sox7 expression.

View Article and Find Full Text PDF

Purpose: Necrotizing fasciitis (NF) is a scarce but potentially life-threatening infection. However, no research has reported the cellular heterogeneity in patients with NF. We aim to investigate the change of cells from deep fascia in response to NF by single-cell RNA-seq.

View Article and Find Full Text PDF

Introduction: Glioma is the most common primary malignant brain tumor. Despite advances in surgical techniques and treatment regimens, the therapeutic effects of glioma remain unsatisfactory. Immunotherapy has brought new hope to glioma patients, but its therapeutic outcomes are limited by the immunosuppressive nature of the tumor microenvironment (TME).

View Article and Find Full Text PDF

Generation and characterization of OX40-ligand fusion protein that agonizes OX40 on T-Lymphocytes.

Front Immunol

January 2025

Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.

OX40, a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed on the surface of activated T cells. Upon interaction with its cognate ligand, OX40L, OX40 transmits costimulatory signals to antigen-primed T cells, promoting their activation, differentiation, and survivalprocesses essential for the establishment of adaptive immunity. Although the OX40-OX40L interaction has been extensively studied in the context of disease treatment, developing a substitute for the naturally expressed membrane-bound OX40L, particularly a multimerized OX40L trimers, that effectively regulates OX40-driven T cell responses remains a significant challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!