Despite the positive outcome of the recent randomized trial of computed tomography (CT) screening for lung cancer, substantial implementation challenges remain, including the clear reporting of relative risk and suggested workup of screen-detected nodules. Based on current literature, we propose a 6-level Lung-Reporting and Data System (LU-RADS) that classifies screening CTs by the nodule with the highest malignancy risk. As the LU-RADS level increases, the risk of malignancy increases. The LU-RADS level is linked directly to suggested follow-up pathways. Compared with current narrative reporting, this structure should improve communication with patients and clinicians, and provide a data collection framework to facilitate screening program evaluation and radiologist training. In overview, category 1 includes CTs with no nodules and returns the subject to routine screening. Category 2 scans harbor minimal risk, including <5 mm, perifissural, or long-term stable nodules that require no further workup before the next routine screening CT. Category 3 scans contain indeterminate nodules and require CT follow up with the interval dependent on nodule size (small [5-9 mm] or large [≥ 10 mm] and possibly transient). Category 4 scans are suspicious and are subdivided into 4A, low risk of malignancy; 4B, likely low-grade adenocarcinoma; and 4C, likely malignant. The 4B and 4C nodules have a high likelihood of neoplasm simply based on screening CT features, even if positron emission tomography, needle biopsy, and/or bronchoscopy are negative. Category 5 nodules demonstrate frankly malignant behavior on screening CT, and category 6 scans contain tissue-proven malignancies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carj.2014.03.004DOI Listing

Publication Analysis

Top Keywords

data system
8
system lu-rads
8
computed tomography
8
tomography screening
8
lu-rads level
8
screening
5
lung reporting
4
reporting data
4
lu-rads
4
lu-rads proposal
4

Similar Publications

Online vibration state identification of multi-rigid-body system based on self-healing model.

Sci Rep

December 2024

School of Mechanical Engineering, Liaoning Engineering Vocational College, Tieling, 112008, Liaoning, People's Republic of China.

The paper proposes a multi-rigid-body system state identification method based on self-healing model in order to improve the accuracy and reliability of CNC machine tools. Firstly, considering the influence of the joint surface, the Lagrange method is used to establish the mechanical model of the multi-rigid-body system. We input acceleration information and use the second-order modulation function to complete the online real-time identification of the joint surface parameters, thereby establishing the self-healing mechanical model of the multi-rigid-body system.

View Article and Find Full Text PDF

Spherical tanks have been predominantly used in process industries due to their large storage capability. The fundamental challenges in process industries require a very efficient controller to control the various process parameters owing to their nonlinear behavior. The current research work in this paper aims to propose the Approximate Generalized Time Moments (AGTM) optimization technique for designing Fractional-Order PI (FOPI) and Fractional-Order PID (FOPID) controllers for the nonlinear Single Spherical Tank Liquid Level System (SSTLLS).

View Article and Find Full Text PDF

The novel coronavirus (COVID-19) has affected more than two million people of the world, and far social distancing and segregated lifestyle have to be adopted as a common solution in recent years. To solve the problem of sanitation control and epidemic prevention in public places, in this paper, an intelligent disinfection control system based on the STM32 single-chip microprocessor was designed to realize intelligent closed-loop disinfection in local public places such as public toilets. The proposed system comprises seven modules: image acquisition, spraying control, disinfectant liquid level control, access control, voice broadcast, system display, and data storage.

View Article and Find Full Text PDF

Central to the development of universal learning systems is the ability to solve multiple tasks without retraining from scratch when new data arrives. This is crucial because each task requires significant training time. Addressing the problem of continual learning necessitates various methods due to the complexity of the problem space.

View Article and Find Full Text PDF

Establishing normative values and understanding how proprioception varies among body parts is crucial. However, the variability across individuals, especially adolescents, makes it difficult to establish norms. This prevents further investigation into classifying patients with abnormal proprioception.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!