Determination of lutein from green tea and green tea by-products using accelerated solvent extraction and UPLC.

J Food Sci

Dept. of Food and Nutrition, Chung-Ang Univ, Anseoung-si Gyeonggi-do, 456-756, Korea.

Published: May 2014

Unlabelled: We aimed to identify the optimum conditions for the extraction of lutein from green tea using accelerated solvent extraction, and achieve improved analytical resolution and sensitivity between lutein and zeaxanthin using an ultra performance liquid chromatography (UPLC) system. The optimized method employed 80% ethanol as the extraction solvent, 160 °C as the temperature, 2 static cycles, and 5 min of static time. In the validation of the UPLC method, recovery was found to be in the range approximately 93.73 to 108.79%, with a correlation coefficient of 0.9974 and a relative standard deviation of <9.29% in inter- and intraday precision analyses. Finally, the lutein contents of green tea and green tea by-products were measured as 32.67 ± 0.70 and 18.18 ± 0.68 mg/100g dw, respectively. Furthermore, we verified that green tea by-products, which are discarded after producing green tea beverages, might be used as a great resource for massive lutein production.

Practical Application: We have demonstrated that the common problem of inadequate resolution between lutein and zeaxanthin during carotenoid analyses can be overcome by optimizing the combined techniques of accelerated solvent extraction and ultra performance liquid chromatography (UPLC). UPLC was highly effective for saving time, solvent, and labor, as well as providing better resolution. The results in this study demonstrated that green tea by-products could be used as new sources for industrial lutein production owing to their massive production during the extraction of green tea beverages.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.12438DOI Listing

Publication Analysis

Top Keywords

green tea
12
lutein green
8
accelerated solvent
8
solvent extraction
8
determination lutein
4
tea green
4
tea by-products
4
by-products accelerated
4
extraction
4
extraction uplc
4

Similar Publications

This case report describes an adult man in his 50s with a history of type 2 diabetes and previously well-controlled hypertension, who presented with uncontrolled hypertension, muscle weakness and fatigue. Biochemical testing revealed hypokalaemia. There was no evidence of renal/renovascular disease.

View Article and Find Full Text PDF

Background: The association between tea consumption, especially different types, and cognitive function has not been adequately explored. This study aimed to investigate the associations of tea consumption, including status, frequency, and type, with cognitive function, considering selection bias.

Methods: We used data from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) in 2018(N = 8498).

View Article and Find Full Text PDF

Background: Tea-oil Camellia within the genus Camellia is renowned for its premium Camellia oil, often described as "Oriental olive oil". So far, only one partial mitochondrial genomes of Tea-oil Camellia have been published (no main Tea-oil Camellia cultivars), and comparative mitochondrial genomic studies of Camellia remain limited.

Results: In this study, we first reconstructed the entire mitochondrial genome of C.

View Article and Find Full Text PDF

Modulation of V-type starch structures using aqueous ethanol solutions of different polarities for controlled curcumin encapsulation and release.

Int J Biol Macromol

January 2025

Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China. Electronic address:

This study investigated the effect of different-polarity aqueous ethanol solutions on the formation of V-type starch originating from corn starch. Scanning electron microscopy revealed that the morphology of starch transformed from a random lamellar structure to a granular structure with decreasing solution polarity. When the ethanol concentration increased from 40 % to 60 %, the crystallinity and single-helix ratio of V-type starch increased from 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!