Hypertrophic cardiomyopathy (HCM) is a cardiac disease, characterized by marked hypertrophy and genetic variability. HCM has been associated with sarcomere protein mutations, being cardiac beta-myosin (coded by the MYH7 gene) and myosin binding protein C (coded by the MYBPC3 gene) the most frequently affected proteins. As in Venezuela only the clinical analysis are performed in HCM patients, we decided to search for genetic variations in the MYH7 gene. Coding regions, including the junction exon-intron of the MYH7 gene, were studied in 58 HCM patients, whose samples were collected at the ASCARDIO Hospital (Barquisimeto, Lara state, Venezuela) and 106 control subjects from the ASCARDIO Hospital and the IVIC (Barquisimeto Lara state and Miranda, Venezuela, respectively). The blood samples were analyzed by genomic DNA isolation, followed by polymerase chain reaction and sequence analysis. The screening of the MYH7 gene revealed eight already reported polymorphic variants, as well as two intronic variations in these HCM patients. Neither any missense mutations nor other pathological mutations in the MYH7 gene were found in the HCM patients.

Download full-text PDF

Source

Publication Analysis

Top Keywords

myh7 gene
20
hcm patients
16
genetic variations
8
hypertrophic cardiomyopathy
8
ascardio hospital
8
barquisimeto lara
8
lara state
8
hcm
6
gene
6
patients
5

Similar Publications

Astragali Radix-Notoginseng Radix et Rhizoma medicine pair prevents cardiac remodeling by improving mitochondrial dynamic balance.

Chin J Nat Med

January 2025

Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China. Electronic address:

Astragali Radix (AR) and Notoginseng Radix et Rhizoma (NR) are frequently employed in cardiovascular disease treatment. However, the efficacy of the AR-NR medicine pair (AN) in improving cardiac remodeling and its underlying mechanism remains unclear. This study aimed to evaluate AN's cardioprotective effect and potential mechanism on cardiac remodeling using transverse aortic constriction (TAC) in mice and angiotensin II (Ang II)-induced neonatal rat cardiomyocytes (NRCMs) and fibroblasts in vitro.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Clinical features, mutation spectrum and factors related to reaching molecular diagnosis in a cohort of patients with distal myopathies.

J Neurol

January 2025

Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain.

Background: Distal myopathies (MPDs) are heterogeneous diseases of complex diagnosis whose prevalence and distribution in specific populations are unknown.

Methods: Demographic, clinical, genetic, neurophysiological, histopathological and muscle imaging characteristics of a MPDs cohort from a neuromuscular reference center were analyzed to study their epidemiology, features, genetic distribution and factors related to diagnosis.

Results: The series included 219 patients (61% were men, 94% Spanish and 41% sporadic cases).

View Article and Find Full Text PDF

This study aimed to elucidate the impact of advanced glycation end products (AGEs) and glucose shock on cardiomyocyte viability, gene expression, cardiac biomarkers, and cardiac contractility. Firstly, AGEs were generated in-house, and their concentration was confirmed using absorbance measurements. AC16 cardiomyocytes were then exposed to varying doses of AGEs, resulting in dose-dependent decreases in cell viability.

View Article and Find Full Text PDF

Haplotyping-based preimplantation genetic testing for inherited cardiovascular disease: a multidisciplinary approach.

Mol Genet Genomics

December 2024

Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China.

Given the high morbidity, mortality, and hereditary risk of cardiovascular diseases (CVDs), their prevention and control have garnered widespread attention and remain central to clinical research. This study aims to assess the feasibility and necessity of haplotyping-based preimplantation genetic testing for the prevention of inherited CVD. A total of 15 preimplantation genetic testing for monogenic defect (PGT-M) cycles were performed in 12 CVD families from January 2016 to July 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!