We report a facile two-step methodology; electrospinning followed by high temperature treatment, to produce manganese oxide-based nanofibers with well-controlled nanoscale architectures. Electrospinning of manganese acetate-based solution (MnOx precursor) has been utilized to fabricate meso-porous manganese oxide nanofibers. These fibers have diameters of about 200-300 nm and fiber mats have been shown to have specific surface area of over 12 m2/g. Scanning and transmission electron microscopy results show that electrospinning has been successfully utilized to create nanofibers with deep inter-connected internal meso-pores for high surface area. In addition, fibers have been spun in a co-axial arrangement to fabricate hollow meso-porous nanofibers, or to develop core-shell nanofibers with nanoparticles of manganese oxides decorated over current conducting carbon core. X-ray diffraction analysis of the oxide fibers confirms the presence of manganese oxides (MnO2, Mn3O4) after calcination at 700 degrees C. These architectures, we believe, are potentially favorable for use in Li-ion batteries, Li-air batteries and supercapacitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2014.8704 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!