Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A new electron transfer dyad, covalently linked C70-corrole, was prepared via C70 and 10-(4-Formylaryl)-5,15-bis(pentafluorophenyl). The structures and the properties of the new material were investigated by HPLC, MALDI-TOF-MS, UV-Vis-NIR spectroscopy, NMR, fluorescence analysis and CV/DPV. The free-energy of C70-corrole calculated by employing the redox potentials and singlet excited-state energy suggested the possibility of electron transfer from the excited singlet state of corrole to the fullerene entity, which agreed with the results of the theoretical calculation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2014.8069 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!