High-fat diet (HFD) plays a central role in the initiation of mitochondrial dysfunction that significantly contributes to skeletal muscle metabolic disorders in obesity. However, the mechanism by which HFD weakens skeletal muscle metabolism by altering mitochondrial function and biogenesis is unknown. Given the emerging roles of microRNAs (miRNAs) in the regulation of skeletal muscle metabolism, we sought to determine whether activation of a specific miRNA pathway would rescue the HFD-induced mitochondrial dysfunction via the sirtuin-1 (SIRT-1)/ peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) pathway, a pathway that governs genes necessary for mitochondrial function. We here report that miR-149 strongly controls SIRT-1 expression and activity. Interestingly, miR-149 inhibits poly(ADP-ribose) polymerase-2 (PARP-2) and so increased cellular NAD(+) levels and SIRT-1 activity that subsequently increases mitochondrial function and biogenesis via PGC-1α activation. In addition, skeletal muscles from HFD-fed obese mice exhibit low levels of miR-149 and high levels of PARP-2, and they show reduced mitochondrial function and biogenesis due to a decreased activation of the SIRT-1/PGC-1α pathway, suggesting that mitochondrial dysfunction in the skeletal muscle of obese mice may be because of, at least in part, miR-149 dysregulation. Overall, miR-149 may be therapeutically useful for treating HFD-induced skeletal muscle metabolic disorders in such pathophysiological conditions as obesity and type 2 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db13-1364DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
24
mitochondrial function
16
mitochondrial dysfunction
12
function biogenesis
12
mitochondrial
8
muscle metabolic
8
metabolic disorders
8
muscle metabolism
8
obese mice
8
skeletal
7

Similar Publications

Skeletal muscle disorders as risk factors for type 2 diabetes.

Mol Cell Endocrinol

January 2025

Department of Physiology and Biophysics, Rush University, Chicago, United States.

The incidence and prevalence of muscular disorders and of type 2 diabetes (T2D) is increasing and both represent highly significant healthcare problems, both economically and compromising quality of life. Interestingly, skeletal muscle dysfunction and T2D share some commonalities including dysregulated glucose homeostasis, increased oxidative stress, dyslipidemia, and cytokine alterations. Several lines of evidence have hinted to a relationship between skeletal muscle dysfunction and T2D.

View Article and Find Full Text PDF

Gut Microbiota-Bone Axis.

Ann Nutr Metab

January 2025

Department of Translational Medical Science, University of Naples Federico II, Napoli, Italy.

Background: Knowledge of the complex interplay between gut microbiota and human health is gradually increasing as it has just recently been a field of such great interest.

Summary: Recent studies have reported that communities of microorganisms inhabiting the gut influence the immune system through cellular responses and shape many physiological and pathophysiological aspects of the body, including muscle and bone metabolism (formation and resorption). Specifically, the gut microbiota affects skeletal homeostasis through changes in host metabolism, the immune system, hormone secretion, and the gut-brain axis.

View Article and Find Full Text PDF

Objective: This study aimed to explore the predictive value of baseline CT body composition and its early changes on recurrence-free survival (RFS) following radical gastrectomy, while also assessing potential sex-related differences.

Methods: We conducted a retrospective analysis of gastric cancer (GC) patients with confirmed pathology from October 2019 to May 2023. All patients underwent preoperative and postoperative CT scans to assess visceral fat area (VFA), subcutaneous fat area (SFA), skeletal muscle area (SMA), and skeletal muscle density (SMD), along with calculating their respective rates of change.

View Article and Find Full Text PDF

The expression of chromosome 19 miRNA cluster members during insulin sensitivity changes in pregnancy.

Placenta

January 2025

Mother Infant Research Institute, Tufts Medicine, Boston, MA, USA; Dept Obstetrics & Gynecology, Tufts University, Boston, MA, USA. Electronic address:

Hypothesis: Declines in insulin sensitivity during pregnancy important for fetal growth are associated with impairments in skeletal muscle post-receptor insulin signaling. The primary initiator of these changes is unknown but believed to originate in the placenta. We hypothesize that placental miRNAs are associated with maternal sensitivity changes and impact insulin-sensitive mechanisms in target tissues in vitro.

View Article and Find Full Text PDF

Physical activity, cathepsin B, and cognitive health.

Trends Mol Med

January 2025

Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China. Electronic address:

Regular physical activity (PA) is beneficial for cognitive health, and cathepsin B (CTSB) - a protease released by skeletal muscle during PA - acts as a potential molecular mediator of this association. PA-induced metabolic and mechanical stress appears to increase plasma/serum CTSB levels. CTSB facilitates neurogenesis and synaptic plasticity in brain regions (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!