Objective: Long noncoding RNAs (lncRNAs) play crucial regulatory roles in diverse biologic processes, but knowledge of lncRNAs in osteoarthritis (OA) is limited. The aim of this study was to identify lncRNA expression in articular cartilage and to explore the function of cartilage injury-related lncRNAs (lncRNA-CIR) in OA.

Methods: To identify lncRNAs specifically expressed in OA cartilage, we compared the expression of lncRNAs in OA cartilage with that in normal cartilage using microarray and quantitative polymerase chain reaction (qPCR) analyses. In OA cartilage, lncRNA-CIR was specifically, differentially, and highly expressed. The function of lncRNA-CIR was determined by silencing and overexpression in vitro. Extracellular matrix (ECM)-related molecules were detected by qPCR, Western blot, and immunofluorescence analyses.

Results: Up to 152 lncRNAs were found to be differentially expressed (>8-fold) in OA and normal cartilage (82 lncRNAs more highly expressed and 70 less highly expressed in OA cartilage than in normal cartilage). A specific differentially expressed lncRNA-CIR was selected according to the results of the higher expression in OA cartilage and OA chondrocytes. The expression of lncRNA-CIR increased in chondrocytes with in vitro treatment with interleukin-1β and tumor necrosis factor α. Silencing of lncRNA-CIR by small interfering RNA promoted the formation of collagen and aggrecan and reduced the expression of matrix-degrading enzymes, such as MMP13 and ADAMTS5. The expression of collagen and aggrecan was reduced, whereas the expression of matrix-degrading enzymes was increased, after overexpression of lncRNA-CIR.

Conclusion: The results indicate that lncRNA-CIR contributes to ECM degradation and plays a key role in the pathogenesis of OA. We propose that lncRNA-CIR could be used as a potential target in OA therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.38309DOI Listing

Publication Analysis

Top Keywords

normal cartilage
12
highly expressed
12
cartilage
11
long noncoding
8
extracellular matrix
8
lncrna-cir
8
expressed cartilage
8
cartilage normal
8
differentially expressed
8
collagen aggrecan
8

Similar Publications

Purpose: Tympanoplasty is a surgical procedure performed to cure middle ear infections and restore normal middle ear function. It is one of the most common procedures in otological surgery. Since Wullstein described tympanoplasty, the microscope has been a widely used surgical tool in otological surgery.

View Article and Find Full Text PDF

Background And Aim: Goupi Plaster (GP) is topical traditional Chinese medicine preparation. It has been used to treat Knee Osteoarthritis (KOA) in clinical practice of traditional Chinese medicine (TCM). However, the mechanisms of GP relieve KOA are poorly understood.

View Article and Find Full Text PDF

Comprehensive Analysis Reveals the Potential Diagnostic Value of Biomarkers Associated With Aging and Circadian Rhythm in Knee Osteoarthritis.

Orthop Surg

January 2025

Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China.

Objective: Knee osteoarthritis (KOA) is characterized by structural changes. Aging is a major risk factor for KOA. Therefore, the objective of this study was to examine the role of genes related to aging and circadian rhythms in KOA.

View Article and Find Full Text PDF

Background: Microfracture drilling is a surgical technique that involves creating multiple perforations in areas of cartilage defects to recruit stem cells from the bone marrow, thereby promoting cartilage regeneration in the knee joint. Increasing the exposed bone marrow surface area (more holes in the same area) can enhance stem cell outflow. However, when the exposed area is large, it may affect the mechanical strength of the bone at the site of the cartilage defect.

View Article and Find Full Text PDF

The high-dynamic, high-loading environment in the joint cavity puts urgent demands on the cartilage regenerative materials with shear responsiveness and lubrication. Here, a new type of injectable hydrogel composed of oxidized hyaluronic acid (OHA), adipic dihydrazide-grafted hyaluronic acid (HA-ADH), oxidized chondroitin sulfate (OChs), and decellularized extracellular matrix methacrylate (dECMMA) was fabricated. The aldehyde groups in OHA and OChs reacted with the amino groups in HA-ADH to form a dynamic hydrogel, which was then covalently crosslinked with dECMMA to create a dual-crosslinked hydrogel with sufficient mechanical strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!