A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insight into the recognition, binding, and reactivity of catalytic metallodrugs targeting stem loop IIb of hepatitis C IRES RNA. | LitMetric

Insight into the recognition, binding, and reactivity of catalytic metallodrugs targeting stem loop IIb of hepatitis C IRES RNA.

ChemMedChem

Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210 (USA), Fax: (+1) 614-292-1685.

Published: June 2014

The complex Cu-GGHYrFK-amide (1-Cu) was previously reported as a novel metallotherapeutic that catalytically inactivates stem loop IIb (SLIIb) of the hepatitis C virus (HCV) internal ribosomal entry site (IRES) RNA and demonstrates significant antiviral activity in a cellular HCV replicon assay. Herein we describe additional studies focused on understanding the cleavage mechanism as well as the relationship of catalyst configuration to structural recognition and site-selective cleavage of the structured RNA motif. These are advanced by use of a combination of MALDI-TOF mass spectrometry, melting temperature determinations, and computational analysis to develop a structural model for binding and reactivity toward SLIIb of the IRES RNA. In addition, the binding, reactivity, and structural chemistry of the all-D-amino acid form of this metallopeptide, complex 2-Cu, are reported and compared with those of complex 1-Cu. In vitro RNA binding and cleavage assays for complex 2-Cu show a KD value of 76 ± 3 nM, and Michaelis-Menten parameters of kcat =0.14 ± 0.01 min(-1) and KM =7.9 ± 1.2 μM, with a turnover number exceeding 40. In a luciferase-based cellular replicon assay Cu-GGhyrfk-amide shows activity similar to that of the 1-Cu parent peptide, with an IC50 value of 1.9 ± 0.4 μM and cytotoxicity exceeding 100 μM. RT-PCR experiments confirm a significant decrease in HCV RNA levels in replicon assays for up to nine days when treated with complex 1-Cu in three-day dosing increments. This study shows the influence that the α-carbon stereocenter has for this new class of compounds, while detailed mass spectrometry and computational analyses provide new insight into the mechanisms of recognition, binding, and reactivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163017PMC
http://dx.doi.org/10.1002/cmdc.201400070DOI Listing

Publication Analysis

Top Keywords

binding reactivity
16
ires rna
12
recognition binding
8
stem loop iib
8
replicon assay
8
mass spectrometry
8
complex 2-cu
8
complex 1-cu
8
rna
6
binding
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!