Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While the impact of alcohol consumption by pregnant women on fetal neurodevelopment has received much attention, the effects on the cardiovascular system are not well understood. We hypothesised that repeated exposure to alcohol (ethanol) in utero would alter fetal arterial reactivity and wall stiffness, key mechanisms leading to cardiovascular disease in adulthood. Ethanol (0.75 g (kg body weight)(-1)) was infused intravenously into ewes over 1 h daily for 39 days in late pregnancy (days 95-133 of pregnancy, term ∼147 days). Maternal and fetal plasma ethanol concentrations at the end of the hour were ∼115 mg dl(-1), and then declined to apparent zero over 8 h. At necropsy (day 134), fetal body weight and fetal brain-body weight ratio were not affected by alcohol infusion. Small arteries (250-300 μm outside diameter) from coronary, renal, mesenteric, femoral (psoas) and cerebral beds were isolated. Endothelium-dependent vasodilatation sensitivity was reduced 10-fold in coronary resistance arteries, associated with a reduction in endothelial nitric oxide synthase mRNA (P = 0.008). Conversely, vasodilatation sensitivity was enhanced 10-fold in mesenteric and renal resistance arteries. Arterial stiffness was markedly increased (P = 0.0001) in all five vascular beds associated with an increase in elastic modulus and, in cerebral vessels, with an increase in collagen Iα mRNA. Thus, we show for the first time that fetal arteries undergo marked and regionally variable adaptations as a consequence of repeated alcohol exposure. These alcohol-induced vascular effects occurred in the apparent absence of fetal physical abnormalities or fetal growth restriction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080940 | PMC |
http://dx.doi.org/10.1113/jphysiol.2013.262873 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!