Fluorescent push-pull pH-responsive probes for ratiometric detection of intracellular pH.

Org Biomol Chem

Laboratoire de Chimie de l'ENS de Lyon, CNRS UMR 5182, Ecole Normale Supérieure de Lyon, Université Lyon I, 46 allée d'Italie, 69364 Lyon cedex 07, France.

Published: June 2014

AI Article Synopsis

  • A family of fluorescent probes has been developed that responds to pH changes, based on a specific chemical structure known to be a strong electron acceptor.
  • Structural variations in the probes can adjust their acidity, represented by a pK(a) range from 4.8 to 8.6.
  • Significant changes in fluorescence intensity were observed with different pH levels, and the most effective probes for near-neutral pH were utilized for imaging pH levels inside cells.

Article Abstract

A family of fluorescent push-pull pH-responsive probes based on 2-dicyanomethylidene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran as a strong electron acceptor group is described. Small structural variations allow obtaining pK(a) ranging from 4.8 to 8.6, underlining the role of the substituent in modulating the acidic properties. Remarkable changes in the optical properties (in particular the fluorescence intensity ratios) were observed as a function of pH. The most interesting probes with pK(a) close to neutrality were used for ratiometric imaging of intracellular pH.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4ob00147hDOI Listing

Publication Analysis

Top Keywords

fluorescent push-pull
8
push-pull ph-responsive
8
ph-responsive probes
8
probes ratiometric
4
ratiometric detection
4
detection intracellular
4
intracellular family
4
family fluorescent
4
probes based
4
based 2-dicyanomethylidene-3-cyano-455-trimethyl-25-dihydrofuran
4

Similar Publications

Roadmap for Designing Donor-π-Acceptor Fluorophores in UV-Vis and NIR Regions: Synthesis, Optical Properties and Applications.

Biomolecules

January 2025

Department of Chemistry, Molecular Basis of Disease, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA.

Donor acceptor (D-π-A) fluorophores containing a donor unit and an acceptor moiety at each end connected by a conjugated linker gained attention in the last decade due to their conjugated system and ease of tunability. These features make them good candidates for various applications such as bioimaging, photovoltaic devices and nonlinear optical materials. Upon excitation of the D-π-A fluorophore, intramolecular charge transfer (ICT) occurs, and it polarizes the molecule resulting in the 'push-pull' system.

View Article and Find Full Text PDF

Molecular recognition and detection of small bioactive molecules, like neurotransmitters, remain a challenge for chemists, whereas nature found an elegant solution in form of protein receptors. Here, we introduce a concept of a dynamic artificial receptor that synergically combines molecular recognition with dynamic imine bond formation inside a lipid nanoreactor, inducing a fluorescence response. The designed supramolecular system combines a lipophilic recognition ligand derived from a boronic acid, a fluorescent aldehyde based on push-pull styryl pyridine and a phenol-based catalyst.

View Article and Find Full Text PDF

Polarity-Sensitive fluorescent probes based on triphenylamine for fluorescence lifetime imaging of lipid droplets.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, PR China. Electronic address:

Non-alcoholic fatty liver disease (NAFLD) is a disease closely associated with metabolic abnormalities. Lipid droplets (LDs) serve as organelles that store intracellular neutral lipids and maintain cellular energy homeostasis. Their abnormalities can cause metabolic disorders and disease, which is also one of the distinctive characteristics of NAFLD patients.

View Article and Find Full Text PDF

Although the Doppler velocity log is widely applied to measure underwater fluid flow, it requires high power and is inappropriate for measuring low flow velocity. This study proposes a fluid flow sensor that utilizes optical flow sensing. The proposed sensor mimics the neuromast of a fish by attaching a phosphor to two pillar structures (A and B) produced using ethylene propylene diene monomer rubber.

View Article and Find Full Text PDF

Fluorescent sensing technology has advantages such as high sensitivity, good selectivity, and easy operation. It is widely used in the environment and biomedical field and receives increasing attention from people. It is easy to modify the structure of the benzothiazole fluorophores, and adding the push-pull electronic system can regulate the optical properties of benzodiapylene molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!