Hemodynamic disturbed flow induces differential DNA methylation of endothelial Kruppel-Like Factor 4 promoter in vitro and in vivo.

Circ Res

From the Department of Pathology & Laboratory Medicine and Institute for Medicine & Engineering (Y.-Z.J., J.M.J., M.E.M., L.-D.Z., P.F.D.) and Pharmacology Graduate Group (K.O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.

Published: June 2014

Rationale: Hemodynamic disturbed flow (DF) is associated with susceptibility to atherosclerosis. Endothelial Kruppel-Like Factor 4 (KLF4) is an important anti-inflammatory atheroprotective transcription factor that is suppressed in regions of DF.

Objective: The plasticity of epigenomic KLF4 transcriptional regulation by flow-mediated DNA methylation was investigated in vitro and in arterial tissue.

Methods And Results: To recapitulate dominant flow characteristics of atheroprotected and atherosusceptible arteries, human aortic endothelial cells were subjected to pulsatile undisturbed flow or oscillatory DF containing a flow-reversing phase. Differential CpG site methylation was measured by methylation-specific polymerase chain reaction, bisulfite pyrosequencing, and restriction enzyme-polymerase chain reaction. The methylation profiles of endothelium from disturbed and undisturbed flow sites of adult swine aortas were also investigated. In vitro, DF increased DNA methylation of CpG islands within the KLF4 promoter that significantly contributed to suppression of KLF4 transcription; the effects were mitigated by DNA methyltransferase (DNMT) inhibitors and knockdown of DNMT3A. Contributory mechanisms included DF-induced increase of DNMT3A protein (1.7-fold), DNMT3A enrichment (11-fold) on the KLF4 promoter, and competitive blocking of a myocyte enhancer factor-2 binding site in the KLF4 promoter near the transcription start site. DF also induced DNMT-sensitive propathological expression of downstream KLF4 transcription targets nitric oxide synthase 3, thrombomodulin, and monocyte chemoattractant protein-1. In support of the in vitro findings, swine aortic endothelium isolated from DF regions expressed significantly lower KLF4 and nitric oxide synthase 3, and bisulfite sequencing of KLF4 promoter identified a hypermethylated myocyte enhancer factor-2 binding site.

Conclusions: Hemodynamics influence endothelial KLF4 expression through DNMT enrichment/myocyte enhancer factor-2 inhibition mechanisms of KLF4 promoter CpG methylation with regional consequences for atherosusceptibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4065854PMC
http://dx.doi.org/10.1161/CIRCRESAHA.115.303883DOI Listing

Publication Analysis

Top Keywords

klf4 promoter
20
dna methylation
12
enhancer factor-2
12
klf4
11
hemodynamic disturbed
8
disturbed flow
8
endothelial kruppel-like
8
kruppel-like factor
8
investigated vitro
8
undisturbed flow
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!