Circadian rhythm and sleep disruptions occur frequently in individuals with alcohol use disorders (AUD) and present significant barriers to treatment. Recently, a variant of adenosine transporter, equilibrative nucleoside transporter 1 (ENT1), was associated with the co-occurrence of sleep problems and AUD. We have previously shown that mice lacking ENT1 (ENT1 KO) have reduced adenosine levels in the striatum and drink more alcohol compared with wild types (WT). However, it is unknown whether ENT1 deletion disrupts circadian rhythms, which may contribute to alcohol preference in ENT1 KO mice. Here we used these mice to determine whether endogenous adenosine regulates circadian genetic and behavioral rhythms and influences alcohol intake during chronodisruption. We examined circadian locomotor activity in ENT1 KO vs WT littermates and found that ENT1 KO mice were both active earlier and hyperactive compared with WT mice at night. We used real-time PCR and immunohistochemistry to estimate striatal clock gene levels and found that PER2 expression in the striatum was blunted by ENT1 deletion or A2A receptor (A2AR) antagonism. Next, we exposed ENT1 KO and WT mice to constant light (LL) and found further elevation in ethanol intake in ENT1 KO, but not in WT mice, supporting the notion that circadian dysfunction may contribute to increased alcohol intake in ENT1 KO mice. Finally, we showed that A2AR agonist administration normalized PER1 and PER2 expression and circadian locomotor activity in ENT1 KO mice. Together, our results demonstrate that adenosine signaling regulates cellular and behavioral circadian timing and influences alcohol intake during chronodisruption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138755 | PMC |
http://dx.doi.org/10.1038/npp.2014.94 | DOI Listing |
Nat Commun
December 2024
Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
The current opioid crisis urgently calls for developing non-addictive pain medications. Progress has been slow, highlighting the need to uncover targets with unique mechanisms of action. Extracellular adenosine alleviates pain by activating the adenosine A1 receptor (A1R).
View Article and Find Full Text PDFCancer Res
December 2024
Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
Immunosuppression by adenosine is an important cancer immune checkpoint. Extracellular adenosine signals through specific receptors and can be transported across the cell membrane through nucleoside transporters. While adenosine receptors are well-known to regulate tumor immunity, the impact of adenosine transporters remains unexplored.
View Article and Find Full Text PDFNutrients
September 2024
Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico.
Background: Acute myeloid leukemia (AML) is a hematological neoplasm of rapid and progressive onset, and is the most common form of leukemia in adults. Chemoresistance to conventional treatments such as cytarabine (Ara-C) and daunorubicin is a main cause of relapse, recurrence, metastasis, and high mortality in AML patients. It is known that sodium caseinate (SC), a salt derived from casein, a milk protein, inhibits growth and induces apoptosis in acute myeloid leukemia cells but not in normal hematopoietic cells.
View Article and Find Full Text PDFPLoS One
July 2024
Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan.
The nucleic acids found in food play a crucial role in maintaining various bodily functions. This study investigated the potential anticancer effects of dietary nucleic acids, an area that is still not fully understood. By utilizing an in vivo mouse model and an in vitro cell model, we discovered an anti-proliferative impact of RNA in both systems.
View Article and Find Full Text PDFNeoplasia
July 2024
Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany. Electronic address:
Background: Pancreatic ductal adenocarcinoma (PDAC) poorly responds to antineoplastic agents. Discrepancies between preclinical success and clinical failure of compounds has been a continuous challenge and major obstacle in PDAC research.
Aim: To investigate the association of the tumor microenvironment (TME) composition and gemcitabine metabolizing enzyme (GME) expression in vitro and several in vivo models.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!