Objectives: Methohexital, a barbiturate anesthetic commonly used for electroconvulsive therapy (ECT), possesses dose-dependent anticonvulsant properties, and its use can interfere with effective seizure therapy in patients with high seizure thresholds. Ketamine, an N-methyl-d-aspartate antagonist with epileptogenic properties not broadly used for ECT inductions, is a commonly used induction agent for general anesthesia. Recent studies suggest that the use of ketamine is effective in allowing successful ECT treatment in patients with high seizure thresholds without an increase in adverse effects. In this preliminary study, we directly compared the recovery and reorientation times of subjects receiving ketamine and methohexital for ECTs.
Methods: Twenty patients were randomized in a crossover design to receive methohexital and ketamine for ECT inductions in alternating fashion in 6 trials. Primary outcome measures were recovery time (voluntary movement, respiratory effort, blood pressure, consciousness, and O2 saturation) and reorientation time. Secondary outcome measures were individual recovery variables, adverse effect occurrence, and seizure duration.
Results: Overall recovery time was not significantly different between the 2 treatment arms (F(1, 17) = 0.72; P = 0.41). Reorientation time was faster in the methohexital arm (F(1, 17) = 9.23; P = 0.007).
Conclusion: Ketamine inductions resulted in higher number of adverse effects, higher subject dropout rates, and a longer reorientation time with respect to methohexital inductions. No significant difference in postanesthesia recovery time was found between the ketamine and methohexital arms. Intolerability to ketamine affected a significant proportion of subjects and suggests that ketamine should remain as an alternative or adjunctive agent for patients with high seizure thresholds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205224 | PMC |
http://dx.doi.org/10.1097/YCT.0000000000000132 | DOI Listing |
Comput Methods Programs Biomed
January 2025
Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing, China.
Background And Objectives: Computer-assisted orthopedic surgical techniques and robotics has improved the therapeutic outcome of pelvic fracture reduction surgery. The preoperative reduction path is one of the prerequisites for robotic movement and an essential reference for manual operation. As the largest irregular bone with complicated morphology, the rotational motion of pelvic fracture fragments impacts the reduction process directly.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Objective: This study was to employ 18F-flurodeoxyglucose (FDG-PET) to evaluate the resting-state brain glucose metabolism in a sample of 46 patients diagnosed with disorders of consciousness (DoC). The aim was to identify objective quantitative metabolic indicators and predictors that could potentially indicate the level of awareness in these patients.
Methods: A cohort of 46 patients underwent Coma Recovery Scale-Revised (CRS-R) assessments in order to distinguish between the minimally conscious state (MCS) and the unresponsive wakefulness syndrome (UWS).
J Phys Chem B
January 2025
Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
It is widely believed that the aggregation of amyloid β (Aβ) peptides into soluble oligomers is the root cause behind Alzheimer's disease. In this study, we have performed room-temperature molecular dynamics (MD) simulations of aggregated Aβ oligomers of different sizes (pentamer (O(5)), decamer (O(10)), and hexadecamer (O(16))) in binary aqueous solutions containing 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF]) ionic liquid (IL). Investigations have been carried out to obtain a microscopic understanding of the effects of the IL on the dynamic environment around the exterior surfaces and within the confined nanocores of the oligomers.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India.
Molecular dynamics simulations were employed to investigate the reorientation dynamics of water molecules under supercritical conditions. Our findings indicate that supercritical water consists of a fluctuating assembly of water clusters of varying sizes. The reorientational motions are characterized by large angular displacements and occur on fast time scales.
View Article and Find Full Text PDFProteins
January 2025
Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India.
The structural plasticity of proteins at the molecular level is largely dictated by backbone torsion angles, which play a critical role in ligand recognition and binding. To establish the anion-induced cooperative arrangement of the main-chain (mc) torsion, herein, we analyzed a set of naturally occurring CαNN motifs as "static models" for their anion-binding competence through docking and molecular dynamics simulations and decoded its torsion angle influenced mc-driven anion recognition potential. By comparing a pool of 20 distinct sets of CαNN motif with identical sequences in their "anion bound/present, aP" and "anion free/absent, aA" versions, we could discern that there exists a positive correlation between the "difference of anion residence time (ΔR)" and "difference among the main-chain torsion angle" of the aP and aA population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!