Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Tracking of replicative senescence is of fundamental relevance in cellular therapy. Cell preparations - such as mesenchymal stromal cells (MSCs) - undergo continuous changes during culture expansion, which is reflected by impaired proliferation and loss of differentiation potential. This process is associated with epigenetic modifications: during in vitro culture, cells acquire senescence-associated DNA methylation (SA-DNAm) changes at specific sites in the genome. We have recently described an Epigenetic-Senescence-Signature that facilitates prediction of the state of cellular aging by analysis of DNAm at six CpG sites (associated with the genes GRM7, CASR, PRAMEF2, SELP, CASP14 and KRTAP13-3), but this has not yet been proven over subsequent passages and with MSCs isolated under good manufacturing practice (GMP) conditions.
Findings: MSCs were isolated from human bone marrow and GMP-conform expanded for up to 11 passages. Cumulative population doublings (cPDs) and long-term growth curves were calculated based on cell numbers at each passage. Furthermore, 32 cryopreserved aliquots of these cell preparations were retrospectively analyzed using our Epigenetic-Senescence-Signature: DNAm-level was analyzed at six specific CpGs, and the results were used to estimate cPDs, time of culture expansion, and passage numbers. Overall, predicted and real parameters revealed a good correlation, particularly in cPDs. Based on predicted cPDs we could reconstruct long-term growth curves and demonstrated the continuous increase in replicative senescence on molecular level.
Conclusion: Epigenetic analysis of specific CpG sites in the genome can be used to estimate the state of cellular aging for quality control of therapeutic cell products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005405 | PMC |
http://dx.doi.org/10.1186/1756-0500-7-254 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!