Motivation: Currently, there are no ontologies capable of describing both the spatial organization of groups of cells and the behaviors of those cells. The lack of a formalized method for describing the spatiality and intrinsic biological behaviors of cells makes it difficult to adequately describe cells, tissues and organs as spatial objects in living tissues, in vitro assays and in computational models of tissues.

Results: We have developed an OWL-2 ontology to describe the intrinsic physical and biological characteristics of cells and tissues. The Cell Behavior Ontology (CBO) provides a basis for describing the spatial and observable behaviors of cells and extracellular components suitable for describing in vivo, in vitro and in silico multicell systems. Using the CBO, a modeler can create a meta-model of a simulation of a biological model and link that meta-model to experiment or simulation results. Annotation of a multicell model and its computational representation, using the CBO, makes the statement of the underlying biology explicit. The formal representation of such biological abstraction facilitates the validation, falsification, discovery, sharing and reuse of both models and experimental data.

Availability And Implementation: The CBO, developed using Protégé 4, is available at http://cbo.biocomplexity.indiana.edu/cbo/ and at BioPortal (http://bioportal.bioontology.org/ontologies/CBO).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133580PMC
http://dx.doi.org/10.1093/bioinformatics/btu210DOI Listing

Publication Analysis

Top Keywords

behaviors cells
12
cell behavior
8
behavior ontology
8
intrinsic biological
8
biological behaviors
8
describing spatial
8
cells tissues
8
cells
7
describing
5
biological
5

Similar Publications

We build and study an individual based model of the telomere length's evolution in a population across multiple generations. This model is a continuous time typed branching process, where the type of an individual includes its gamete mean telomere length and its age. We study its Malthusian's behaviour and provide numerical simulations to understand the influence of biologically relevant parameters.

View Article and Find Full Text PDF

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

Tongue squamous cell carcinoma (TSCC) is a common malignant oral cancer characterized by substantial invasion, a high rate of lymph node and distant metastasis, and a high recurrence rate. This study aims to provide new ideas for the diagnosis and treatment of TSCC patients by exploring the related mechanisms that affect the migration and invasion of TSCC and inhibit the migration and spread of cancer cells. The results indicated the rate of high expression of IL-17 in cancer tissues was greater than that in tongue tissues, and the expression of IL-17 was related to the TNM stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!