Background: As a consequence of gene/genome duplication, the RTN4/Nogo gene has two counterparts in zebrafish: rtn4a and rtn4b. The shared presence of four specific amino acid motifs-M1 to M4-in the N-terminal region of mammalian RTN4, and zebrafish Rtn4b suggests that Rtn4b is the closest homologue of mammalian Nogo-A.
Results: To explore their combined roles in zebrafish development, we characterized the expression patterns of rtn4a and rtn4b in a comparative manner and performed morpholino-mediated knockdowns. Although both genes were coexpressed in the neural tube and developing brain at early stages, they progressively acquired distinct expression domains such as the spinal cord (rtn4b) and somites (rtn4a). Downregulation of rtn4a and rtn4b caused severe brain abnormalities, with rtn4b knockdown severely affecting the spinal cord and leading to immobility. In addition, the retinotectal projection was severely affected in both morphants, as the retina and optic tectum appeared smaller and only few retinal axons reached the abnormally reduced tectal neuropil. The neuronal defects were more persistent in rtn4b morphants. Moreover, the latter often lacked pectoral fins and lower jaws and had malformed branchial arches. Notably, these defects led to larval death in rtn4b, but not in rtn4a morphants.
Conclusions: In contrast to mammalian Nogo-A, its zebrafish homologues, rtn4a and particularly rtn4b, are essential for embryonic development and patterning of the nervous system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113184 | PMC |
http://dx.doi.org/10.1186/1749-8104-9-8 | DOI Listing |
Mol Biol Cell
August 2019
Department of Molecular Biology, University of Wyoming, Laramie, WY 82071.
Endoplasmic reticulum (ER) tubules and sheets conventionally correspond to smooth and rough ER, respectively. The ratio of ER tubules-to-sheets varies in different cell types and changes in response to cellular conditions, potentially impacting the functional output of the ER. To directly test whether ER morphology impacts vesicular trafficking, we increased the tubule-to-sheet ratio in three different ways, by overexpressing Rtn4a, Rtn4b, or REEP5.
View Article and Find Full Text PDFSci Rep
October 2016
Cell and Molecular Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
Reticulons (RTNs) are a large family of membrane associated proteins with various functions. NOGO-A/RTN4A has a well-known function in limiting neurite outgrowth and restricting the plasticity of the mammalian central nervous system. On the other hand, Reticulon 4 proteins were shown to be involved in forming and maintaining endoplasmic reticulum (ER) tubules.
View Article and Find Full Text PDFNeural Dev
April 2014
Department of Biology, University of Konstanz, Universitätsstrasse 10, 78476 Konstanz, Germany.
Background: As a consequence of gene/genome duplication, the RTN4/Nogo gene has two counterparts in zebrafish: rtn4a and rtn4b. The shared presence of four specific amino acid motifs-M1 to M4-in the N-terminal region of mammalian RTN4, and zebrafish Rtn4b suggests that Rtn4b is the closest homologue of mammalian Nogo-A.
Results: To explore their combined roles in zebrafish development, we characterized the expression patterns of rtn4a and rtn4b in a comparative manner and performed morpholino-mediated knockdowns.
Blood
February 2011
Department of Pharmacology, Yale University School of Medicine, CT, USA.
The reticulon (Rtn) family of proteins are localized primarily to the endoplasmic reticulum (ER) of most cells. The Rtn-4 family, (aka Nogo) consists of 3 splice variants of a common gene called Rtn-4A, Rtn-4B, and Rtn-4C. Recently, we identified the Rtn-4B (Nogo-B) protein in endothelial and smooth muscle cells of the vessel wall, and showed that Nogo-B is a regulator of cell migration in vitro and vascular remodeling and angiogenesis in vivo.
View Article and Find Full Text PDFActa Myol
December 2006
USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles, CA 90017-1912, USA.
Nogo (RTN4) belongs to the reticulon (RTN) family of integral membrane proteins. RTN4A (Nogo-A), RTN4B (Nogo-B) and RTN4C (Nogo-C) are isoforms of RTN4. In the gastrocnemius muscle of transgenic mice bearing an SOD1 mutation ("ALS model"), increased Nogo-A mRNA and protein was reported, and similar changes were reported in muscle biopsies of patients with amyotrophic lateral sclerosis (ALS) but not with peripheral neuropathy or primary muscle diseases, leading to the proposal that Nogo-A in skeletal muscle is a new specific molecular marker of ALS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!