Conventional eye drops are the most popular delivery systems in the treatment of various eye infections. However, the major problem encountered in these dosage forms is precorneal elimination of the drug, resulting in poor bioavailability and therapeutic response. To overcome the side effects of pulsed dosing, an attempt has been made to formulate and evaluate a novel in situ gelling system of Sparfloxacin for sustained ocular drug delivery (ion and pH triggered gelling system). These gelling systems involve the use of sodium alginate (ion sensitive polymer) used as gelling agent and methylcellulose as viscosity-enhancing agent. The developed formulations were evaluated for clarity, pH, gelling capacity, rheological study, in vitro release study, ex vivo corneal permeation study, ocular irritation studies (HET-CAM test) and histopathological study using isolated goat corneas. The formulations were found to be stable, non-irritant and showed sustained release of the drug for a period up to 24 h with no ocular damage. In situ gel of sparfloxacin could be prepared successfully promising their use in ophthalmic delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10837450.2014.910807 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!