Download full-text PDF

Source

Publication Analysis

Top Keywords

[preventing paclitaxel-induced
4
paclitaxel-induced toxicity
4
toxicity reducing
4
reducing glutathione]
4
[preventing
1
toxicity
1
reducing
1
glutathione]
1

Similar Publications

Clavulanic acid prevents paclitaxel-induced neuropathic pain through a systemic and central anti-inflammatory effect in mice.

Neurotherapeutics

January 2025

Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico. Electronic address:

Paclitaxel (PCX) based treatments, commonly used to treat breast, ovarian and lung cancers, have the highest incidence of chemotherapy-induced neuropathic pain, affecting from 38 to 94 ​% of patients. Unfortunately, analgesic treatments are not always effective for PCX-induced neuropathic pain (PINP). This study aimed to evaluate the antinociceptive effect of clavulanic acid (CLAV), a clinically used β-lactam molecule, in both therapeutic and preventive contexts in mice with PINP.

View Article and Find Full Text PDF

Background: Paclitaxel is a widely used anticancer drug for ovarian, lung, breast, and stomach cancers; however, its clinical use is often limited by the side effects of peripheral neuropathy. This study evaluated the effects of () extract and its active metabolite, α-cyperone, on paclitaxel-induced neuropathic pain.

Methods: The oral administration of extract at doses of 500 mg/kg and intraperitoneal administration of α-cyperone at doses of 480 and 800 μg/kg prevented both the development of cold and mechanical pain.

View Article and Find Full Text PDF

Paclitaxel-induced peripheral neuropathy in male rats attenuated by calmangafodipir, a superoxide dismutase mimetic.

J Pharmacol Sci

January 2025

Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.

Article Synopsis
  • Paclitaxel causes peripheral neuropathy, which limits its dosage, and there aren't currently effective preventative treatments.
  • Researchers tested calmangafodipir, a superoxide dismutase mimetic, on male rats to see if it could prevent this nerve damage from paclitaxel.
  • The study found that while paclitaxel led to pain sensitivity and nerve damage, calmangafodipir showed protective effects, preventing both symptoms and signs of neuropathy in the rats.
View Article and Find Full Text PDF

The cannabinoid CB agonist LY2828360 suppresses neuropathic pain behavior and attenuates morphine tolerance and conditioned place preference in rats.

Neuropharmacology

March 2025

Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN, USA. Electronic address:

Cannabinoid CB agonists show promise as analgesics because they lack unwanted side effects associated with direct activation of CB receptors. CB receptor activation suppresses pathological pain in animal models, but the types of pain that best respond to CB agonists are incompletely understood. This gap in knowledge may contribute to failures in clinical translation.

View Article and Find Full Text PDF

FATS inhibits the Wnt pathway and induces apoptosis through degradation of MYH9 and enhances sensitivity to paclitaxel in breast cancer.

Cell Death Dis

November 2024

Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.

Breast cancer is one of the most prevalent and diverse malignancies, and, with global cases increasing, the need for biomarkers to inform individual sensitivity to chemotherapeutics has never been greater. Our retrospective clinical analysis predicted that the expression of the fragile site-associated tumor suppressor (FATS) gene was associated with the sensitivity of breast cancer to neoadjuvant chemotherapy with paclitaxel. In vitro experiments subsequently demonstrated that FATS significantly increased the inhibitory effects of paclitaxel on breast cancer cells' migration, growth, and survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!