Decellularization provides low immunogenicity and is only slightly subject to calcification in tissue engineering. However, the mechanical properties of the tissues are weakened after decellularization. We adopted cross-linking agent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) to treat decellularized porcine pulmonary artery valvular leaflets to improve their mechanical properties. Twenty porcine pulmonary artery valvular leaflets were divided into three groups: the fresh control group A, group B treated with trypsin and Triton X-100 to remove cells, and group C cross-linked with EDC after decellularization. All samples were evaluated the physical and mechanical properties and were then subcutaneously embedded in rabbits. These valvular leaflets were removed after 1, 2, or 4 weeks and checked for pathological changes. The cells of the valvular leaflets were completely removed. The thickness of the valvular leaflets was thinner in group B than in group A (P<0.01). In the subcutaneous embedding of the group B samples, there was mild immunological response after 1-2 weeks, and parts of the scaffolds were degraded. After 4 weeks, fibroblasts had grown into the scaffolds. In group C, there was an increase in the tensile strength and thermal shrinkage temperature in group C compared with group B (P<0.01). In subcutaneous embedding of the group C samples, there was a mild immunological response after 1-2 weeks. The fibroblasts had grown into the samples. The EDC-based cross-linking procedure can enhance the tensile strength of decellularized pulmonary artery valvular leaflets and both decrease the valvular leaflets' rejection and promote tissue regeneration in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3992404 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!