Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials.

Appl Phys Lett

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405, USA ; School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250, USA.

Published: February 2014

Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977784PMC
http://dx.doi.org/10.1063/1.4864635DOI Listing

Publication Analysis

Top Keywords

capacitive micromachined
8
micromachined ultrasonic
8
cmut array
8
ultrasonic transducer
4
transducer arrays
4
arrays tunable
4
tunable acoustic
4
acoustic metamaterials
4
metamaterials capacitive
4
ultrasonic transducers
4

Similar Publications

Flexible micromachined ultrasound transducers (MUTs) for biomedical applications.

Microsyst Nanoeng

January 2025

Department of Electrical Engineering (ESAT-MNS), KU Leuven, Belgium.

The use of bulk piezoelectric transducer arrays in medical imaging is a well-established technology that operates based on thickness mode piezoelectric vibration. Meanwhile, advancements in fabrication techniques have led to the emergence of micromachined alternatives, namely, piezoelectric micromachined ultrasound transducer (PMUT) and capacitive micromachined ultrasound transducer (CMUT). These devices operate in flexural mode using piezoelectric thin films and electrostatic forces, respectively.

View Article and Find Full Text PDF

Tire pressure monitoring systems (TPMSs) are essential for maintaining driving safety by continuously monitoring critical tire parameters, such as pressure and temperature, in real time during vehicle operation. Among these parameters, tire pressure is the most significant, necessitating the use of highly precise, cost-effective, and energy-efficient sensing technologies. With the rapid advancements in micro-electro-mechanical system (MEMS) technology, modern automotive sensing and monitoring systems increasingly rely on MEMS sensors due to their compact size, low cost, and low power consumption.

View Article and Find Full Text PDF

The placenta plays a critical role in nutrient and oxygen exchange during pregnancy, yet the effects of medicinal drugs on this selective barrier remain poorly understood. To overcome this, this study presents a cost-effective bioimpedance spectroscopy (BIS) system to assess tight junction integrity and monolayer formation in BeWo b30 cells, a widely used model of the multinucleated maternal-fetal exchange surface of the placental barrier. Cells were cultured on collagen-coated porous membranes and treated with forskolin to induce controlled syncytialization.

View Article and Find Full Text PDF

PET-PZT Dielectric Polarization: Electricity Harvested from Photon Energy.

Micromachines (Basel)

December 2024

Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.

The effect of residual stress or heat on ferroelectrics used to convert photons into electricity was investigated. The data analysis reveals that when the PET-PZT piezoelectric transducer is UV-irradiated with a 405 nm wavelength, it becomes a photon-heat-stress electric energy converter and capacitator. Our objective was to evaluate the PET-PZT photon-heat-stress electric energy conversion performance and the role of the light's wavelength and intensity.

View Article and Find Full Text PDF

Deformation-Induced Electromagnetic Reconfigurable Square Ring Kirigami Metasurfaces.

Micromachines (Basel)

December 2024

Tianmushan Laboratory, Yuhang District, Hangzhou 311115, China.

The continuous expansion of wireless communication application scenarios demands the active tuning of electromagnetic (EM) metamaterials, which is essential for their flexible adaptation to complex EM environments. However, EM reconfigurable systems based on intricate designs and smart materials often exhibit limited flexibility and incur high manufacturing costs. Inspired by mechanical metastructures capable of switching between multistable configurations under repeated deformation, we propose a planar kirigami frequency selective surface (FSS) that enables mechanical control of its resonant frequency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!