The current study is based on the "approach-withdrawal" theory of emotional regulation and lateralization of brain function in rodents, which has little been studied. The aim was to indentify asymmetry in hemispheric genes expression during depression. Depressive-like symptoms were induced in rats using chronic mild stress protocol. The sucrose consumption test was performed to identify the anhedonic and stress-resilient rats. After decapitation, RNA was extracted from frontotemporal cortex of both hemispheres of anhedonic and stress-resilient rats. The pattern of gene expression in these samples was compared with controls by real-time polymerase chain reaction. A linear mixed model analysis of variance was fitted to the data to estimate the effect of rat line. From the total of 30 rats in the experimental group, five rats were identified to be anhedonic and five were stress-resilient, according to the result of sucrose-consumption test. BDNF and NTRK-3 were expressed at significantly lower levels in the right hemisphere of anhedonic rats compared with stress-resilient rats. No significant difference was found between left hemispheres. Hemispheric asymmetry in the level of gene expression was only observed for the BDNF gene in stress-resilient rats, upregulated in right hemisphere compared with the left. Expression of NTRK3, HTR2A, COMT, and SERT was not lateralized. There was no significant asymmetry between hemispheres of anhedonic rats. This study supports the evidence for the role of genes responsible for neural plasticity in pathophysiology of depression, emphasizing probable hemispheric asymmetry at level of gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1002/syn.21746DOI Listing

Publication Analysis

Top Keywords

stress-resilient rats
20
anhedonic stress-resilient
12
gene expression
12
rats
10
hemispheres anhedonic
8
anhedonic rats
8
hemispheric asymmetry
8
asymmetry level
8
level gene
8
stress-resilient
6

Similar Publications

In sexually mature male Wistar rats with modeled post-traumatic stress disorder, personalized characteristics of neurobiological reactions in the population of predator-induced stress-resilient and stress-susceptible heparinized animals were determined. Characteristics of the systemic response of immune mechanisms, hypothalamic-pituitary-adrenal axis, behavioral manifestations, as well as basic properties of the CNS (excitation/inhibition) are presented. The study demonstrated encouraging positive results of the course administration of unfractionated heparin at a dose below the therapeutic and prophylactic doses.

View Article and Find Full Text PDF

The gut microbiome modulates the susceptibility to traumatic stress in a sex-dependent manner.

J Neurosci Res

March 2024

National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.

Post-traumatic stress disorder (PTSD), a psychological condition triggered by exposure to extreme or chronic stressful events, exhibits a sex bias in incidence and clinical manifestations. Emerging research implicates the gut microbiome in the pathogenesis of PTSD and its roles in stress susceptibility. However, it is unclear whether differential gut microbiota contribute to PTSD susceptibility in male and female rats.

View Article and Find Full Text PDF

Dysfunctional fear responses in post-traumatic stress disorder (PTSD) may be partly explained by an inability to effectively extinguish fear responses elicited by trauma-related cues. However, only a subset of individuals exposed to traumatic stress develop PTSD. Therefore, studying fear extinction deficits in animal models of individual differences could help identify neural substrates underlying vulnerability or resilience to the effects of stress.

View Article and Find Full Text PDF

Maternal separation modifies spontaneous synaptic activity in the infralimbic cortex of stress-resilient male rats.

PLoS One

November 2023

Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México.

Glutamate and GABA signaling systems are necessary to maintain proper function of the central nervous system through excitation/inhibition (E/I) balance. Alteration of this balance in the medial prefrontal cortex (mPFC), as an effect of early-life stress, may lead to the development of anxiety and depressive disorders. Few studies exist in the infralimbic division of the mPFC to understand the effect of early-life stress at different ages, which is the purpose of the present work.

View Article and Find Full Text PDF

Exposure to traumatic stress is a major risk factor for the development of neuropsychiatric disorders in a subpopulation of individuals, whereas others remain resilient. The determinants of resilience and susceptibility remain unclear. Here, we aimed to characterize the microbial, immunological, and molecular differences between stress-susceptible and stress-resilient female rats before and after exposure to a traumatic experience.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!