The redox switchable formation of very well-defined supramolecular graft polymers in aqueous solution driven by host-guest interactions between ferrocene (Fc) and cyclodextrin (CD) is presented. The Fc-containing acrylic backbone copolymer (PDMA-stat-Fc) is prepared via reversible addition-fragmentation chain transfer (RAFT) copolymerization of N,N-dimethyl-acrylamide (DMA) and the novel monomer N-(ferrocenoylmethyl)acrylamide (NFMA). Via the RAFT process, copolymers containing variable Fc ratios (5-10 mol%) are prepared, affording polymers of molecular masses of close to 11,000 g mol(-1) and molar mass dispersities (Đ) of 1.2. The β-cyclodextrin (β-CD) containing building block is synthesized via RAFT-polymerization, too, in order to afford a polymer with well-defined molecular mass and low dispersity (Mn = 10 300 g mol(-1) , Đ = 1.1), employing a propargyl-functionalized chain transfer agent for the polymerization of N,N-diethylacrylamide (DEA). The polymerization product is subsequently terminated with β-CD via the regiospecific copper (I)-catalyzed 1,3-cycloaddition (PDEA-βCD). Host-guest interactions between Fc and CD lead to the formation of supramolecular graft-polymers, verified via nuclear Overhauser enhancement spectroscopy (NOESY). Importantly, their redox-responsive character is clearly confirmed via cyclic voltammetry (CV). The self-assembly of the statistical Fc-containing lateral polymer chain in aqueous solution leads to mono- and multi-core micelle-aggregates evidenced via TEM. Only diffused cloud-like, non-spherical nanostructures are observed after addition of PDEA-βCD (TEM).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.201400122 | DOI Listing |
Acta Biomater
January 2025
Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China; International Center of Future Science, Jilin University, Changchun, Jilin, PR China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, PR China. Electronic address:
Tumor-associated macrophages (TAMs) significantly influence the clinical outcomes of immune checkpoint blockade (ICB) therapy. Strategies aimed at reprogramming TAMs from the immunosuppressive M2 phenotype to the pro-inflammatory M1 phenotype hold promise for enhancing ICB efficacy. Lipopolysaccharide (LPS), a potent Toll-like receptor 4 (TLR4) ligand, can reprogram TAMs toward an M1 phenotype.
View Article and Find Full Text PDFInterdiscip Cardiovasc Thorac Surg
December 2024
Cardiac Surgery Department, Sanatorio Italiano, Asunción, Paraguay.
Coronary artery bypass graft (CABG) surgery remains the gold standard in the treatment of complex coronary artery disease. Saphenous vein grafts (SVG) are commonly used for the non-left anterior descending artery. However, SVG failure rates in CABG surgery have been reported to be as high as 30% at 1 year and ∼50% at 10 years.
View Article and Find Full Text PDFSmall
January 2025
Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China.
Flexible wearable sensors with bimodal functionality offer substantial value for human health monitoring, as relying on a single indicator is insufficient for capturing comprehensive physiological information. However, bimodal sensors face multiple challenges in practical applications, including mutual interference between various modalities, and integration of excellent mechanical properties, interfacial adhesion, environmental adaptability and biocompatibility. Herein, the multifunctional hydrogel, synthesized through radical grafting and supramolecular self-crosslinking reactions, exhibits excellent thermal sensitivity (TCR = -1.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
The versatile properties of carbohydrate polymers make them a relevant, promising precursor to design innovative materials for use in biomedical applications. Recent research mainly focuses on the development of the polysaccharide based functional materials. Hydrogel derived materials are a source of great motivation for the development of drug delivery (DD) carriers with inherent therapeutic potential.
View Article and Find Full Text PDFGels
December 2024
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Hydrogels are widely used in the field of adhesive materials. However, hydrogel adhesion has previously required the covalent graft of supramolecular groups on polymeric chains. In contrast to that, here, a hydrogel adhesion induced by covalent polymer entanglement between two hydrogel networks was reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!