Behavioral effects of bovine lactoferrin administration during postnatal development of rats.

Biometals

Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712-1043, USA,

Published: October 2014

We tested the hypothesis that rats consuming bovine lactoferrin (bLf) during postnatal development would show better performance of stressful tasks during adolescence. In the first study, we orally administered bLf (750 mg/kg) once daily between postnatal days 16-34. Rats then underwent a battery of behavioral tests: open field (forced exploration of risky environment), light-dark emergence (voluntary exploration of risky environment), baited holeboard (working and reference memory), food neophobia (preference for familiar versus novel food), forced swim (test for antidepressant efficacy), and shuttle-box escape (learning to escape footshock). bLf-supplemented rats showed less exploration of the risky environment, greater preference for the familiar food odor, and faster escape responses. The effect of bLf on forced-swim behavior depended on sex: immobility increased for males and decreased for females. In the next study, we replaced the forced-swim test with an escape-swim test in which rats learned to use a visual cue to locate an escape platform, and we tested the dose response of bLf on this and the shuttle-box escape test, with subjects receiving vehicle or bLf at 500, 1,000, or 2,000 mg/kg. Under this modified testing battery, improvement of escape from footshock was not observed at any dose. However, males, but not females, showed a significant dose-dependent effect of bLf on acquisition of the water-escape task. On average, males receiving a higher dose mastered the task 20-25 % sooner than rats receiving a lower dose or vehicle. These results offer preliminary evidence that bLf supplementation during development can improve subsequent cognitive performance during stress.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10534-014-9735-6DOI Listing

Publication Analysis

Top Keywords

exploration risky
12
risky environment
12
bovine lactoferrin
8
postnatal development
8
preference familiar
8
shuttle-box escape
8
escape footshock
8
blf
7
rats
6
escape
6

Similar Publications

Family child care (FCC) offers a promising setting for obesity prevention, yet interventions have had varied success, potentially due to insufficient stakeholder input. This study aimed to explore barriers, facilitators, and preferences for healthy eating and physical activity interventions among Australian FCC educators and organization staff. Semi-structured interviews were conducted with 15 FCC educators and 6 staff members, using the framework method for data analysis.

View Article and Find Full Text PDF

Reinforcement learning studies propose that decision-making is guided by a tradeoff between computationally cheaper model-free (habitual) control and costly model-based (goal-directed) control. Greater model-based control is typically used under highly rewarding conditions to minimize risk and maximize gain. Although prior studies have shown impairments in sensitivity to reward value in individuals with frequent alcohol use, it is unclear how these individuals arbitrate between model-free and model-based control based on the magnitude of reward incentives.

View Article and Find Full Text PDF

Differential Expression of GABA Receptor-Related Genes in Alzheimer's Disease and the Positive Regulatory Role of Aerobic Exercise-From Genetic Screening to D-gal-induced AD-like Pathology Model.

Neuromolecular Med

December 2024

Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, 410012, China.

Alzheimer's disease (AD) is the most common neurodegenerative disorder. The neuropathology of AD appears in the hippocampus. The purpose of this work was to reveal key differentially expressed genes (DEGs) in the hippocampus of AD patients and healthy individuals.

View Article and Find Full Text PDF

Low-Pass Whole Genome Sequencing of Cell-Free DNA from Cerebrospinal Fluid: A Focus on Pediatric Central Nervous System Tumors.

Clin Chem

January 2025

Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, United States.

Background: Cell-free DNA (cfDNA) technology has allowed for cerebrospinal fluid (CSF), a previously underutilized biofluid, to be analyzed in new ways. The interrogation of CSF-derived cfDNA is giving rise to novel molecular insights, particularly in pediatric central nervous system (CNS) tumors, where invasive tumor tissue acquisition may be challenging. Contemporary disease monitoring is currently restricted to radiographic surveillance by magnetic resonance imaging and CSF cytology to directly detect abnormal cells and cell clusters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!