NK cells are the main cells of the innate immune system that produce IFN-γ, and they express this cytokine at early stages of maturation in response to cytokine stimulation. Conversely, acquisition of IFN-γ-competence in CD4(+) T helper cells requires a differentiation process from naïve toward type 1 (Th1) cells, which is associated with epigenetic remodeling at the IFNG locus. In the present study, we show that the ability of NK cells to produce IFN-γ in response to activating receptor (actR) engagement is gradually acquired during terminal differentiation and is accompanied by progressively higher NF-κB activation in response to actR triggering. Moreover, during the differentiation process NK cells gradually display increasing expression of IFNG and TBX21 (encoding T-bet) transcripts and demethylation at the IFNG promoter. This study provides new insights in the molecular mechanisms underlying NK-cell ability to express IFN-γ upon actR engagement. Thus, we propose that in order to efficiently produce IFN-γ in response to infected or transformed cells, NK cells gain Th1-like features, such as higher IFN-γ competence and epigenetic remodeling of the IFNG promoter, during their terminal differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.201344072DOI Listing

Publication Analysis

Top Keywords

terminal differentiation
12
produce ifn-γ
12
cells
9
cells gain
8
higher ifn-γ
8
ifn-γ competence
8
differentiation process
8
epigenetic remodeling
8
remodeling ifng
8
ifn-γ response
8

Similar Publications

Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.

View Article and Find Full Text PDF

Biallelic mutations in multiple EGF domain protein 10 (MEGF10) gene cause EMARDD (early myopathy, areflexia, respiratory distress and dysphagia) in humans, a severe recessive myopathy, associated with reduced numbers of PAX7 positive satellite cells. To better understand the role of MEGF10 in satellite cells, we overexpressed human MEGF10 in mouse H-2k-tsA58 myoblasts and found that it inhibited fusion. Addition of purified extracellular domains of human MEGF10, with (ECD) or without (EGF) the N-terminal EMI domain to H-2k-tsA58 myoblasts, showed that the ECD was more effective at reducing myoblast adhesion and fusion by day 7 of differentiation, yet promoted adhesion of myoblasts to non-adhesive surfaces, highlighting the importance of the EMI domain in these behaviours.

View Article and Find Full Text PDF

The establishment of protective immune responses relies on the ability of terminally differentiated B cells to secrete a broad variety of antigen-specific antibodies with different effector functions. RIF1 is a multifunctional protein that promotes antibody isotype diversification via its DNA end protection activity during class switch recombination. In this study, we showed that RIF1 ablation resulted in increased plasmablast formation ex vivo and enhanced terminal differentiation into plasma cells upon immunization.

View Article and Find Full Text PDF

Esmolol has been demonstrated to mitigate inflammation damage and T lymphocyte apoptosis in septic cardiomyopathy. It has been established that the activation of α7 nicotinic acetylcholine receptor (nAChR) by cluster of differentiation 4(CD4) T lymphocytes expressing choline acetyltransferase (ChAT) can prevent excessive inflammation and reduce splenocyte apoptosis in septic cardiomyopathy. Given the similar anti-inflammatory effects, we hypothesized that esmolol might be associated with α7 nAChR and thereby exert its cardioprotective functions.

View Article and Find Full Text PDF

The group 1 alumanyls, [{SiN}AlM] (M = K, Rb, Cs; SiN = {CHSiMeNDipp}), display a variable kinetic facility (K < Rb < Cs) toward oxidative addition of the acidic C-H bond of terminal alkynes to provide the corresponding alkali metal hydrido(alkynyl)aluminate derivatives. Theoretical analysis of the formation of these compounds through density functional theory (DFT) calculations implies that the experimentally observed changes in reaction rate are a consequence of the variable stability of the [{SiN}AlM] dimers, the integrity of which reflects the ability of M to maintain the polyhapto group 1-arene interactions necessary for dimer propagation. These observations highlight that such "on-dimer" reactivity takes place sequentially and also that the ability of each constituent Al(I) center to effect the activation of the organic substrate is kinetically differentiated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!