Hydrophilic interaction liquid chromatography (HILIC) has emerged in recent years as a valuable alternative to reversed-phase liquid chromatography in the analysis of polar compounds. Research in HILIC is divided into two directions: the assessment of the retention mechanism and retention behavior, and the development of HILIC methods. In this work, four polar neutral analytes (iohexol and its related compounds A, B, and C) were analyzed on two silica and two diol columns in HILIC mode with the aim to investigate thoroughly the retention mechanisms and retention behavior of polar neutral compounds on these four columns. The adsorption and partition contribution to the overall HILIC retention mechanism was investigated by fitting the retention data to linear (adsorption and partition) and nonlinear (mixed-retention and quadratic) theoretical models. On the other hand, the establishment of empirical second-order polynomial retention models on the basis of D-optimal design made possible the estimation of the simultaneous influence of several mobile-phase-related factors. Furthermore, these models were also used as the basis for the application of indirect modeling of the selectivity factor and a grid point search approach in order to achieve the optimal separation of analytes. After the optimization goals had been set, the grids were searched and the optimal conditions were identified. Finally, the optimized method was subjected to validation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-014-7808-6 | DOI Listing |
J Phys Chem Lett
January 2025
Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
Research on memristive devices to seamlessly integrate and replicate the dynamic behaviors of biological synapses will illuminate the mechanisms underlying parallel processing and information storage in the human brain, thereby affording novel insights for the advancement of artificial intelligence. Here, an artificial electric synapse is demonstrated on a one-step Mo-selenized MoSe memristor, having not only long-term stable resistive switching characteristics (reset 0.51 ± 0.
View Article and Find Full Text PDFSmall
January 2025
Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
As skin bioelectronics advances, hydrogel wearable devices have broadened perspectives in environment sensing and health monitoring. However, their application is severely hampered by poor mechanical and self-healing properties, environmental sensitivity, and limited sensory functions. Herein, inspired by the hierarchical structure and unique cross-linking mechanism of hagfish slime, a self-powered supramolecular hydrogel is hereby reported, featuring high stretchability (>2800% strain), ultrafast autonomous self-healing capabilities (electrical healing time: 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
With the increasing demand for improved food preservation, conventional waterproof food packaging has proven inadequate because of its limited functionality. Although incorporating features such as antibacterial and antioxidant properties into packaging enhances protection, it can compromise the hydrophobicity of the involved material, thereby increasing the risk of contamination from external sources. To address this challenge, a robust and reliable barrier capable of simultaneously integrating multiple protective functions is required.
View Article and Find Full Text PDFSmall
January 2025
Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China.
Hard carbon (HC) materials are suitable anodes for sodium-ion batteries (SIBs) but still suffer from insufficient initial Coulombic efficiency (ICE). Promoting sodium storage via the pore filling mechanism is an effective way to improve the ICE, and the key here is regulating the pore structures of HC. In this work, coal-derived HC is successfully engineered with abundant accessible closed nanopores by treating the coal precursors with a facile destructive oxidation strategy.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China; Wuhu Green Food Industrial Research Institute Co., Ltd., Wuhu 241000, Anhui- China. Electronic address:
The study involves the modification of a non-conventional starch isolated from the under-utilized variety of Chinese water chestnut (CWC (Eleocharis tuberosa) and integrating it to fabricate stabilized and curcumin-enriched Pickering emulsions with enhanced bioavailability, thermal stability, and retention of encapsulated curcumin. A time-efficient, semi-dried esterification method was used to prepare modified amphiphilic starches using 3, 6, or 9 % (w/v) octenyl succinic anhydride (OSA) and characterized through degree of substitution (DS), contact angle, particle size, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and in-vitro digestibility. Moreover, Pickering emulsions were formulated using CWCS-OSA at 3 %, 6 %, or 9 % concentrations to serve as a carrier for curcumin to improve its water solubility and storage stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!