Upconversion luminescence (UCL) detection based on rare-earth doped upconversion nanocrystals (UCNCs) as probes has been proved to exhibit a large anti-Stokes shift, no autofluorescence from biological samples, and no photobleaching. However, it is still a challenge to achieve a stable, reproducible solid-based UCL biosensor because of ineffective UCL of the UCNCs. In this work, we fabricated TiO2 inverse opal photonic crystals (IOPCs)/NaYF4:Yb(3+),Tm(3+) (Er(3+)) UCNC composite films, which can tremendously improve the overall UCL of Tm(3+) as high as 43-fold. Based on the fluorescence resonance energy transfer (FRET) and the specific interaction between biotin and avidin, a novel solid-based UC biosensor is presented for sensing avidin. This solid-based detection system is convenient for detection, and also can offer two parameters for detecting trace amounts of avidin, namely, the emission intensity and the fluorescence decay time. The sensor has a high sensitivity of 34 pmol(-1), a good linear relationship of 0.996 and a low detection limit of 48 pmol. It also exhibits excellent long-time photostability, and the absence of autofluorescence, and thus may have great potential for versatile applications in biodetection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4nr00224e | DOI Listing |
Molecules
January 2025
Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, H-3515 Miskolc, Hungary.
Inverse opals (IOs) are intensively researched in the field of photocatalysis, since their optical properties can be fine-tuned by the initial nanosphere size and material. Another possible route for photonic crystal programming is to stack IOs with different pore sizes. Accordingly, single and double IOs were synthesized using vertical deposition and atomic layer deposition.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece.
Heterojunction formation between BiVO nanomaterials and benchmark semiconductor photocatalysts has been keenly pursued as a promising approach to improve charge transport and charge separation via interfacial electron transfer for the photoelectrocatalytic degradation of recalcitrant pharmaceutical pollutants. In this work, a heterostructured TiO/Mo-BiVO bilayer photoanode was fabricated by the deposition of a mesoporous TiO overlayer using the benchmark P25 titania catalyst on top of Mo-doped BiVO inverse opal films as the supporting layer, which intrinsically absorbs visible light below 490 nm, while offering improved charge transport. A porous P25/Mo-BiVO bilayer structure was produced from the densification of the inverse opal underlayer after post-thermal annealing, which was evaluated on photocurrent generation in aqueous electrolyte and the photoelectrocatalytic degradation of the refractory anti-inflammatory drug ibuprofen under back-side illumination by visible and UV-Vis light.
View Article and Find Full Text PDFWater Res
December 2024
School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15 04318 Leipzig, Germany; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany. Electronic address:
This study investigates carbon, hydrogen, nitrogen and chlorine isotope fractionation during the transformation of 3-chloroaniline (3-CA) via direct photolysis, TiO photocatalytic degradation at neutral condition and hydrolysis at pH 3, pH 7 and pH 11. Direct photolysis and ∙OH reaction (UV/HO) showed similar inverse isotope fractionation (ε) for carbon (1.9 ± 0.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece.
The rational design of photonic crystal photocatalysts has attracted significant interest in order to improve their light harvesting and photocatalytic performances. In this work, an advanced approach to enhance slow light propagation and visible light photocatalysis is demonstrated for the first time by integrating a planar defect into CoO-TiO inverse opals. Trilayer photonic crystal films were fabricated through the successive deposition of an inverse opal TiO underlayer, a thin titania interlayer, and a photonic top layer, whose visible light activation was implemented through surface modification with CoO nanoscale complexes.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, H-3515 Miskolc, Hungary.
We demonstrate the band gap programming of inverse opals by fabrication of different wall thickness by atomic layer deposition (ALD). The opal templates were synthesized using polystyrene and carbon nanospheres by the vertical deposition method. The structure and properties of the TiO inverse opal samples were investigated using Scanning Electron Microscope (SEM) and Focused Ion Beam Scanning Electron Microscopy (FIB-SEM), Energy Dispersive X-ray analysis (EDX), X-ray Diffraction (XRD) and Finite Difference Time Domain (FDTD) simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!