Background: Hydrogen sulfide contributes to the reduction of oxidative stress-related injury in cardiomyocytes but the underlying mechanism is still unclear.
Aims: Here we investigated the role of voltage-operated calcium channels (VOCCs) as mediators of the beneficial effect of H2S against oxidative stress in cultured rat cardiomyoblasts (H9c2).
Methods: Intracellular calcium signals were measured by fluorimetric live cell imaging and cell viability by colorimetric assay.
Results: Treatment with H2S donor (NaHS 10 µM) or Nifedipine (10 µM) decreased resting intracellular calcium concentration [Ca]i, suggesting that L-type VOCCs are negatively modulated by H2S. In the presence of Nifedipine H2S was still able to lower [Ca]i, while co-incubation with Nifedipine and Ni(2+) 100 µM completely prevented H2S-dependent [Ca]i decrease, suggesting that both L-type and T-type VOCCs are inhibited by H2S. In addition, in the same experimental conditions, H2S triggered a slow increase of [Ca]i whose molecular nature remains to be clarified. Pretreatment of H9c2 with NaHS (10 µM) significantly prevented cell death induced by H2O2. This effect was mimicked by pretreatment with L-Type calcium channel inhibitor Nifedipine (10 µM).
Conclusions: The data provide the first evidence that H2S protects rat cardiomyoblasts against oxidative challenge through the inhibition of L-type calcium channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000358690 | DOI Listing |
Int J Mol Sci
January 2025
Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. Johns, NL A1B 3V6, Canada.
Cell immortalization corresponds to a biologically relevant clinical feature that allows cells to acquire a high proliferative potential during carcinogenesis. In multiple cancer types, Protein Kinase D3 (PKD3) has often been reported as a dysregulated oncogenic kinase that promotes cell proliferation. Using mouse embryonic fibroblasts (MEFs), in a spontaneous immortalization model, PKD3 has been demonstrated as a critical regulator of cell proliferation after immortalization.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.
: Hypertension (HTN) constitutes a significant global health burden, yet the specific genetic variant responsible for blood pressure regulation remains elusive. This study investigates the genetic basis of hypertension in the Jordanian population, focusing on gene variants related to ion channels and transporters, including , , , , , , , , and . : This research involved 200 hypertensive patients and 224 healthy controls.
View Article and Find Full Text PDFGenes (Basel)
December 2024
The International Renal Research Institute of Vicenza (IRRIV) Foundation, ULSS 8 BERICA, San Bortolo Hospital, 36100 Vicenza, Italy.
: Autosomal Dominant Polycystic Kidney Disease (ADPKD) is mainly characterized by renal involvement with progressive bilateral development of renal cysts and volumetric increase in the kidneys, causing a loss of renal function, chronic kidney disease (CKD), and kidney failure. The occurrence of mosaicism may modulate the clinical course of the disease. Mosaicism is characterized by a few cell populations with different genomes.
View Article and Find Full Text PDFGenes (Basel)
December 2024
The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, D02 VF25 Dublin, Ireland.
Background: An estimated 10-15% of all genetic diseases are attributable to variants in noncanonical splice sites, auxiliary splice sites and deep-intronic variants. Most of these unstudied variants are classified as variants of uncertain significance (VUS), which are not clinically actionable. This study investigated two novel splice-altering variants, NM_000390.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!